Team:Bielefeld-CeBiTec/Results/Modelling/erster/test/123

From 2014.igem.org

(Difference between revisions)
 
(72 intermediate revisions not shown)
Line 1: Line 1:
-
{{Template:Team:Bielefeld-CeBiTec/igem.css}}
+
<br>
-
{{Template:Team:Bielefeld-CeBiTec/main.css}}
+
-
{{Template:Team:Bielefeld-CeBiTec/Banner_team.css}}
+
-
{{Template:Team:Bielefeld-CeBiTec/Banner_results.tmpl}}
+
-
<html>
+
-
<style>
+
-
flag.flag_element6{
+
-
      background-image:url("https://static.igem.org/mediawiki/2014/0/00/Bielefeld-CeBiTec_14-06-07_Ribbon_middle_rev.png");
+
-
      background-size: 100% 100%;
+
-
      width: auto;
+
-
      height:40px;
+
-
      padding-left: 10px;
+
-
      padding-right: 10px;
+
-
      float:left;
+
-
}
+
-
</style>
+
-
 
+
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Modelling"> Modelling </a>
-
 
+
-
 
+
-
<h1>Modelling</h1>
+
-
 
+
-
 
+
-
<div class="element" style="margin:10px; padding:10px">
+
-
 
+
-
<br><br>
+
-
<h2>Introduction</h2>
+
-
<div id="text">
+
-
  <p>
+
-
Mathematical modelling is essentiell to understand complex biological systems (Klipp et al., 2009). The analysis of isolated biological components is supplemented by a systems biology approach since ten years ago (Chuang et al., 2010). Mathematical modelling is used to combine biological results (Kherlopian et al., 2008). Modelling is also a way to gain results without carrying out experiments in a laboratory. The behaviour of a system can be simulated to get results which cannot be derived from simply looking at the given system (Klipp et al., 2009).
+
-
The most important aim of any modelling approach is the reduction of complexity. The given biological reality is often very divers and variable. Therefor it is important to identify the major rules and principles which can describe a system.
+
-
</p>
+
-
</div>
+
-
 
+
-
<br><br>
+
-
<h2> Results </h2>
+
-
<div id="text">
+
-
<p>
+
-
First of all it was our aim to predict the production of isobutanol. Our model should give information about the optimal concentration of each enzyme in the isobutanol production pathway. The next aim was the prediction of isobutanol production in a carbon dioxide fixing cell.
+
-
The complete system is shown in figure 1. This complex network of reactions was reduced to the system shown in figure 2. This reduced version was used for modelling.
+
-
</p>
+
-
</div>
+
-
 
+
-
 
+
-
<br><br>
+
-
 
+
-
 
+
-
<center>
+
-
<div class="element" style="width:750px">
+
-
      <a href="https://static.igem.org/mediawiki/2014/5/53/Bielefeld-CeBiTec_14-10-14_complete_metabolic_system.jpg" target="_blank"><img src="https://static.igem.org/mediawiki/2014/5/53/Bielefeld-CeBiTec_14-10-14_complete_metabolic_system.jpg" width="750px"></a><br>
+
-
      <font size="2" style="text-align:left;">
+
-
<b>Figure 1</b>: Complete metabolic network of reactions which describes our project. </font>
+
-
</div>
+
-
</center>
+
-
 
+
-
 
+
-
<br><br>
+
-
 
+
-
 
+
-
<center>
+
-
<div class="element" style="width:750px">
+
-
      <a href="https://static.igem.org/mediawiki/2014/b/ba/Bielefeld-CeBiTec_14-10-14_reduced_metabolic_system.jpg" target="_blank"><img src="https://static.igem.org/mediawiki/2014/b/ba/Bielefeld-CeBiTec_14-10-14_reduced_metabolic_system.jpg" width="750px"></a><br>
+
-
      <font size="2" style="text-align:left;">
+
-
<b>Figure 2</b>: Reduced metabolic network of reactions which were selected for modelling. </font>
+
-
</div>
+
-
</center>
+
-
 
+
-
<br><br>
+
-
 
+
-
<div id="text">
+
-
<p>
+
-
We started our modelling work by reading publications about the isobutanol production pathway <a href="#atsumi2008">(Atsumi et al., 2008</a> and <a href="#atsumi2010"> Atsumi et al., 2010)</a>. The first modelling approach was a system of differential equations using Michealis-Menten kinetics. This was published as the best approach if reaction kinetics are not known (REFERENZ EINFÜGEN). All needed V<sub>max</sub> and K<sub>M</sub> values were colleted from the literature and from databases like <a href=“http://www.genome.jp/kegg/“>KEGG</a>, <a href=“http://biocyc.org/“>biocyc</a> and <a href=“http://www.brenda-enzymes.org/“>BRENDA </a>(table 1).
+
-
</p>
+
-
</div>
+
-
 
+
-
Table1: This table shows all enzymatic parameters which were used for our first model.
+
-
 
+
-
 
+
-
<table width="100%" border="1" cellpadding="5" style="background-color:transparent">
+
-
<tr>
+
-
<th>Enzyme</th>
+
-
<th>V<sub>max</sub></th>
+
-
<th>K<sub>M</sub> [mM]</th>
+
-
<th>Reference</th>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>AlsS</td> <td></td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>IlvC</td> <td></td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>IlvD</td> <td></td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>KivD</td> <td></td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>AdhA</td> <td></td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
</table>
+
-
 
+
-
<div id="text">
+
-
<p>
+
-
The starting concentrations for different metabolites were also taken from the literature and from different databases (table 2).
+
-
</p>
+
-
</div>
+
-
 
+
-
Table2: This table shows all metabolite concentrations which were used for our first model. The metabolite concentration was set to zero, if no published value was available.
+
-
 
+
-
<table width="100%" border="1" cellpadding="5" style="background-color:transparent">
+
-
<tr>
+
-
<th>Metabolite</th>
+
-
<th>Concentration [mM]</th>
+
-
<th>Reference</th>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>Pyruvate</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>2-Acetolactate</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>2,3-Dihydroxyisovalerate</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>2-Ketoisovalerate</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>Isobutyraldehyde</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>Isobutanol</td> <td></td> <td></td>
+
-
</tr>
+
-
</table>
+
-
<div id="text">
+
-
<p>
+
-
We implemented the system of differential equations in matlab (link to source code) and created first results (fig. 3).
+
-
</p>
+
-
</div>
+
-
 
+
-
<br><br>
+
-
[Plot für Vmax und Km]
+
-
 
+
-
Fig.3: Predicted changes in metabolic concentration over time.
+
-
<br><br>
+
-
 
+
-
<div id="text">
+
-
<p>
+
-
To improve our prediction we decided to switch from V<sub>max</sub> and K<sub>M</sub> to k<sub>cat</sub> and the amount of the different enzymes (table 3). The amount of expressed proteins could differ depending on the distance of the coding sequence downstream of the promotor. Different values can be used to simulate the usage of promotors of different strength. This approach also allows the modelling of different growth states. The growth is represented by an increase in the amount of enzyme.
+
-
</p>
+
-
</div>
+
-
 
+
-
Table3: This table shows all k<sub>cat</sub> values which were used for modelling of the isobutanol production pathway. k<sub>cat</sub> was set to 10, if no published value was available.
+
-
 
+
-
<table width="100%" border="1" cellpadding="5" style="background-color:transparent">
+
-
<tr>
+
-
<th>Enzyme</th>
+
-
<th>k<sub>cat</sub></th>
+
-
<th>Reference</th>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>AlsS</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>IlvC</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>IlvD</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>KivD</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>AdhA</td> <td></td> <td></td>
+
-
</tr>
+
-
</table>
+
-
 
+
-
<div id="text">
+
-
<p>
+
-
The modelling results indicated that the concentration of IlvD is limiting the isobutanol production. This bottle neck could be removed by overexpression of the corresponding coding sequence. This could be achived by using a strong promotor and RBS in front of this coding sequence.
+
-
</p>
+
-
<p>
+
-
The next model improvement was the addition of some of the carbon fixing reactions and the pathway leading to pyruvate. We used k<sub>cat</sub> values for all relevant steps (fig.2 and table 4).
+
-
</p>
+
-
</div>
+
-
 
+
-
 
+
-
 
+
-
Table4: This table shows all kcat values of enzymes involved in CO2-fixation and the pathway leading to pyruvate.
+
-
<table width="100%" border="1" cellpadding="5" style="background-color:transparent">
+
-
<tr>
+
-
<th>Enzyme</th>
+
-
<th>k<sub>cat</sub></th>
+
-
<th>Reference</th>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>PrkA</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>RubisCO</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>Pgk</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>GapA</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>GpmA</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>Eno</td> <td></td> <td></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td>PykF</td> <td></td> <td></td>
+
-
</tr>
+
-
</table>
+
-
 
+
-
 
+
-
<br><br>
+
-
<br><br>
+
-
<h1>Stoichiometric analysis</h1>
+
-
<div id="text">
+
-
<p>
+
-
We calculated the stoichiometric relations of all substances involved in our complex reaction network (fig. x). Starting with the electrons which are transported into the system by mediators we calculated the resulting production of all other molecules. The results are shown in figure XXX and listed below.
+
-
</div>
+
-
</p>
+
-
 
+
-
<br><br>
+
-
[Grafik mit Zahlen an Interaktionen in Pathway]
+
-
Fig.X: stoichiometric relations of all substances
+
-
<br><br>
+
-
 
+
-
<div id="text">
+
-
<p>
+
-
In theory there are XXXX electrons needed for the production of one molecule isobutanol if CO<sub>2</sub> is used as sole carbon source. Our calculation does not involve the house keeping metabolism of <i>E. coli</i> which consumes lots of energy for its survival. The number of consumed electrons per produced isobutanol molecule is therefor much higher. The applied electric power can be converted into a number of electrons by the following equation: 1 A = 1 C * s<sup>-1</sup> = 6.2415065 * 10<sup>18<sup> electrons.
+
-
</p>
+
-
</div>
+
-
 
+
-
 
+
-
<br><br>
+
-
 
+
-
<div class="element">
+
-
  <div id="text">
+
-
  <h6>References</h6>
+
-
<ul>
+
-
+
-
<li id="atsumi2008">
+
-
<div class="element" style="margin_10px 10px 10px 10px; padding:10px 10px 10px 10px">
+
-
<div id="text">
+
-
Atsumi, Shota, Taizo Hanai, und James C. Liao. „Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels“. <a href="http://www.nature.com/nature/journal/v451/n7174/full/nature06450.html">Nature</a> 451, Nr. 7174 (3. Januar 2008): 86–89. doi:10.1038/nature06450.
+
-
</div>
+
-
</div>
+
-
</li>
+
-
 
+
-
<li id="atsumi2010">
+
-
<div class="element" style="margin_10px 10px 10px 10px; padding:10px 10px 10px 10px">
+
-
<div id="text">
+
-
Atsumi, Shota, Tung-Yun Wu, Eva-Maria Eckl, Sarah D. Hawkins, Thomas Buelter, und James C. Liao. „Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes“. <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802489/">Applied Microbiology and Biotechnology</a> 85, Nr. 3 (Januar 2010): 651–57. doi:10.1007/s00253-009-2085-6.
+
-
</div>
+
-
</div>
+
-
</li>
+
-
 
+
-
</ul>
+
-
</div>
+
-
</div>
+
-
</div>
+
-
</html>
+

Latest revision as of 19:10, 16 October 2014


<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Modelling"> Modelling </a>