Team:Freiburg/Content/Results/Modeling
From 2014.igem.org
Lu.jialiang (Talk | contribs) |
Lu.jialiang (Talk | contribs) |
||
Line 8: | Line 8: | ||
<section id="Results-Modeling-Introduction"> | <section id="Results-Modeling-Introduction"> | ||
- | <h1> | + | <h1>Modeling</h1> |
<p>The AcCELLerator is based on the combination of two systems: the light-regulated gene expression and the retroviral gene delivery.</p> | <p>The AcCELLerator is based on the combination of two systems: the light-regulated gene expression and the retroviral gene delivery.</p> | ||
Line 35: | Line 35: | ||
<p>The whole infection process was described by a set of differential equations, which was adopted from a previous work<sup>1</sup> with small modifications.</p> | <p>The whole infection process was described by a set of differential equations, which was adopted from a previous work<sup>1</sup> with small modifications.</p> | ||
- | <p>First, a viral suspension of depth h was added to a layer of adherent cells to infect them (see Fig. 2). The concentration of the virion ( | + | <p>First, a viral suspension of depth h was added to a layer of adherent cells to infect them (see Fig. 2). The concentration of the virion (V<sub>m</sub>) is a function of both time and depth. It is influenced by four different processes: diffusion, sedimentation, degradation and binding.</p> |
<figure> | <figure> | ||
Line 45: | Line 45: | ||
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
- | + | ||
+ | <p>The diffusion of the virions follows the fick’s law of diffusion. u is the velocity of sedimentation due to gravity. Since the virions are instable at 37°C, they decay in the medium with a constant decay rate k<sub>d_vm</sub>. Thus an additional term was added to the partial differential equation (PDE).</p> | ||
+ | |||
+ | <a href="https://static.igem.org/mediawiki/2014/6/62/Freiburg2014_Results_modeling_pde.jpg"> <!-- ORGINAL --> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/6/62/Freiburg2014_Results_modeling_pde.jpg"> <!-- Thumbnail --> | ||
+ | </a> | ||
+ | |||
</section> | </section> | ||
Revision as of 16:29, 16 October 2014
Modeling
The AcCELLerator is based on the combination of two systems: the light-regulated gene expression and the retroviral gene delivery.
MLV Infection
Model Formulation
In our project, gene delivery was achieved by infecting the cells with recombinant murine leukemia virus (MLV). As a typical retrovirus, its life cycle has been well characterized. Usually, this process can be divided artificially into several steps, including adsorption, internalization, integration, replication, assembly and release. However, our recombinant MLVs lacked the genes which are essentially for the replication and the virus assembly. Thus only the gene of interest (GOI) could be integrated into the genome and expressed. The process from adsorption to integration can be again subdivided into seven steps, so that each step can be described with a simple mathematical model.
The whole infection process was described by a set of differential equations, which was adopted from a previous work1 with small modifications.
First, a viral suspension of depth h was added to a layer of adherent cells to infect them (see Fig. 2). The concentration of the virion (Vm) is a function of both time and depth. It is influenced by four different processes: diffusion, sedimentation, degradation and binding.
The diffusion of the virions follows the fick’s law of diffusion. u is the velocity of sedimentation due to gravity. Since the virions are instable at 37°C, they decay in the medium with a constant decay rate kd_vm. Thus an additional term was added to the partial differential equation (PDE).