English Abstract: LactoAid - A smart bandage for burnwounds
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Team:Groningen/Template/MODULE/abstract
From 2014.igem.org
(Difference between revisions)
Line 42: | Line 42: | ||
</html>{{:Team:Groningen/Template/MODULE/tmpl_textmodule|| | </html>{{:Team:Groningen/Template/MODULE/tmpl_textmodule|| | ||
- | + | Dutch Abstract: <b>LactoAid - Een slim verband voor brandwonden</b><br> | |
<br> | <br> | ||
- | + | Infecties door <i>Staphylococcus aureus</i> en <i>Pseudomonas aeruginosa</i> zorgen vaak voor complicaties bij de behandeling van brandwonden. We hebben een nieuw soort verband ontwikkeld dat deze infecties tegengaat en het gebruik van antibiotica terugdringt waardoor het risico op de ontwikkeling van antibiotica resistentie verminderd wordt. Het verband bestaat uit een hydrogel die genetisch gemodificeerde <i>Lactococcus lactis</i> bevat met nutriënten. Deze gemodificeerde stam van <i>L. lactis</i> detecteert 'quorum sensing' moleculen van de twee pathogenen in de wond en produceert vervolgens zowel het antimicrobiële nisine als enkele andere Infection-Preventing-Molecules (IPMs). Deze IPMs zijn het anti-biofilm eiwit Dispersin B en het quorum quenching eiwit AHLase. The gel zit tussen twee lagen, een bovenlaag die de diffusie van gassen accomodeert en een onderlaag om de bacteriën in het verband vast te houden. De groei van bacteriën begint als de gel bevochtigd wordt door naastliggende waterzakjes te breken, zodat het verband geactiveerd wordt. | |
}}<html> | }}<html> | ||
Revision as of 08:52, 16 October 2014
Home
>
Abstract
English Abstract: LactoAid - A smart bandage for burnwounds
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
English Abstract: LactoAid - A smart bandage for burnwounds
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
English Abstract: LactoAid - A smart bandage for burnwounds
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
English Abstract: LactoAid - A smart bandage for burnwounds
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Dutch Abstract: LactoAid - Een slim verband voor brandwonden
Infecties door Staphylococcus aureus en Pseudomonas aeruginosa zorgen vaak voor complicaties bij de behandeling van brandwonden. We hebben een nieuw soort verband ontwikkeld dat deze infecties tegengaat en het gebruik van antibiotica terugdringt waardoor het risico op de ontwikkeling van antibiotica resistentie verminderd wordt. Het verband bestaat uit een hydrogel die genetisch gemodificeerde Lactococcus lactis bevat met nutriënten. Deze gemodificeerde stam van L. lactis detecteert 'quorum sensing' moleculen van de twee pathogenen in de wond en produceert vervolgens zowel het antimicrobiële nisine als enkele andere Infection-Preventing-Molecules (IPMs). Deze IPMs zijn het anti-biofilm eiwit Dispersin B en het quorum quenching eiwit AHLase. The gel zit tussen twee lagen, een bovenlaag die de diffusie van gassen accomodeert en een onderlaag om de bacteriën in het verband vast te houden. De groei van bacteriën begint als de gel bevochtigd wordt door naastliggende waterzakjes te breken, zodat het verband geactiveerd wordt.
Infecties door Staphylococcus aureus en Pseudomonas aeruginosa zorgen vaak voor complicaties bij de behandeling van brandwonden. We hebben een nieuw soort verband ontwikkeld dat deze infecties tegengaat en het gebruik van antibiotica terugdringt waardoor het risico op de ontwikkeling van antibiotica resistentie verminderd wordt. Het verband bestaat uit een hydrogel die genetisch gemodificeerde Lactococcus lactis bevat met nutriënten. Deze gemodificeerde stam van L. lactis detecteert 'quorum sensing' moleculen van de twee pathogenen in de wond en produceert vervolgens zowel het antimicrobiële nisine als enkele andere Infection-Preventing-Molecules (IPMs). Deze IPMs zijn het anti-biofilm eiwit Dispersin B en het quorum quenching eiwit AHLase. The gel zit tussen twee lagen, een bovenlaag die de diffusie van gassen accomodeert en een onderlaag om de bacteriën in het verband vast te houden. De groei van bacteriën begint als de gel bevochtigd wordt door naastliggende waterzakjes te breken, zodat het verband geactiveerd wordt.
English Abstract: LactoAid - A smart bandage for burnwounds
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
English Abstract: LactoAid - A smart bandage for burnwounds
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
English Abstract: LactoAid - A smart bandage for burnwounds
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
English Abstract: LactoAid - A smart bandage for burnwounds
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.