Team:York/Cake

From 2014.igem.org

(Difference between revisions)
Line 9: Line 9:
     <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css" rel="stylesheet">
     <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css" rel="stylesheet">
     <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap-theme.min.css">
     <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap-theme.min.css">
-
<link href="https://2014.igem.org/Team:York/newCSS.css?action=raw&amp;ctype=text/css" type="text/css" rel="stylesheet">
+
    <link href="https://2014.igem.org/Team:York/newCSS.css?action=raw&amp;ctype=text/css" type="text/css" rel="stylesheet">
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" rel="stylesheet">
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" rel="stylesheet">
 +
   </head>
   </head>
   <body>
   <body>
Line 18: Line 19:
     <!-- Include all compiled plugins (below), or include individual files as needed -->
     <!-- Include all compiled plugins (below), or include individual files as needed -->
     <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script>
     <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script>
-
<script>
+
 
-
$(document).ready(function () {
+
-
  location.hash && $(location.hash + '.collapse').collapse('show');
+
-
});
+
-
</script>
+
<div class="navbar navbar-inverse navbar-fixed-top">
<div class="navbar navbar-inverse navbar-fixed-top">
Line 44: Line 41:
  <b class="caret"></b></a>
  <b class="caret"></b></a>
                                                 <ul class="dropdown-menu">
                                                 <ul class="dropdown-menu">
-
                                                         <li class="active"><a href="https://2014.igem.org/Team:York/Project">Background</a></li>
+
                                                         <li><a href="https://2014.igem.org/Team:York/Project">Background</a></li>
-
                                                         <li><a href="https://2014.igem.org/Team:York/Constructs">Constructs</a></li>
+
                                                         <li class="active"><a href="https://2014.igem.org/Team:York/Constructs">Constructs</a></li>
                                                         <li><a href="https://2014.igem.org/Team:York/Application">Practical Application</a></li>
                                                         <li><a href="https://2014.igem.org/Team:York/Application">Practical Application</a></li>
                                                 </ul>
                                                 </ul>
Line 66: Line 63:
<li><a href="https://2014.igem.org/Team:York/Notebook">Notebook</a></li>
<li><a href="https://2014.igem.org/Team:York/Notebook">Notebook</a></li>
<li><a href="https://2014.igem.org/Team:York/Protocols">Protocols</a></li>
<li><a href="https://2014.igem.org/Team:York/Protocols">Protocols</a></li>
 +
                                                        <li><a href="https://2014.igem.org/Team:York/Characterisation">Characterisation</a></li>
</ul>
</ul>
</li>
</li>
<li><a href="https://2014.igem.org/Team:York/Sponsors">Sponsors</a></li>
<li><a href="https://2014.igem.org/Team:York/Sponsors">Sponsors</a></li>
-
                                        <li><a href="https://twitter.com/iGEMyork" target="_blank"><i class="fa fa-twitter fa-lg"></i></a></li>
+
<li><a href="https://twitter.com/iGEMyork" target="_blank"><i class="fa fa-twitter fa-lg"></i></a></li>
                                         <li><a href="mailto:igemyork2014@gmail.co.uk" target="_blank"><i class="fa fa-envelope fa-lg"></i></a></li>
                                         <li><a href="mailto:igemyork2014@gmail.co.uk" target="_blank"><i class="fa fa-envelope fa-lg"></i></a></li>
</ul>
</ul>
Line 78: Line 76:
</div><br>
</div><br>
<!--  THE TOP HAS ENDED. THE REST OF THE PAGE BEGINS.  -->
<!--  THE TOP HAS ENDED. THE REST OF THE PAGE BEGINS.  -->
-
<div class="container">
+
      <div class="container">
-
<div class="jumbotron">
+
<div class="jumbotron">
-
<div class="row">
+
<div class="row"><div class="col-lg-2"></div>
<div class="col-lg-8">
<div class="col-lg-8">
-
<h2>Our project</h2>
+
<h2>Constructs</h2>
<hr>
<hr>
-
<p>This year, iGEM York are working on a bioremediation project, involving the decontamination of wastewater. Our aim is to increase sulphate uptake in E.coli and chelate Cadmium (a toxic heavy metal) through the use of metal-binding proteins called phytochelatins.  
+
<img class="img-responsive constructs" src="https://static.igem.org/mediawiki/2014/a/ae/York_Constructs.jpg">
-
Our project is divided into two main approaches that are interconnected: </p><ul>
+
<br><br>
-
<li><p>The increase of sulphate uptake (using an exogenous <a href="https://2014.igem.org/Team:York/Constructs#two" target="_blank">sulphate transporter</a> from Bacillus) and its conversion into cysteine by tweaking the cysteine synthesis pathway.</p></li>
+
<ul class="nav nav-tabs" role="tablist" id="myTab">
-
<li><p>The increase of cadmium ion uptake (upregulation of cadmium transporters) and chelation (stabilisation of the metal by metal binding proteins). </p></li></ul><br>
+
    <li class="active"><a href="#one" role="tab" data-toggle="tab">pYodA</a></li>
-
<p>The metal binding proteins are the link between the two approaches as they contain sulphur rich cysteine residues which will act as sinks for the cysteine overproduction.
+
    <li><a href="#two" role="tab" data-toggle="tab">NRAMP</a></li>
-
The metal binding proteins are divided into two main categories: </p><ol>
+
    <li><a href="#three" role="tab" data-toggle="tab">CysP</a></li>
-
<li><p>Phytochelatins (synthesized by a phytochelatin synthetase in a stepwise reaction – so we are working with an exogenous Phytochelatin synthetase gene in E coli)</p></li>
+
    <li><a href="#four" role="tab" data-toggle="tab">SpPCS</a></li>
-
<li><p>Synthetic phytochelatins (engineered and directly translated from the DNA/RNA sequence without the need of a synthase).</p></li></ol><br>
+
    <li><a href="#five" role="tab" data-toggle="tab">Gsh1*</a></li>
-
<p>Our system is regulated by the metal concentration in the environment. If the concentration reaches the threshold of our cadmium inducible promoter (pYoda) sensitivity then it will activate the whole system. Thus, our system prevents the overproduction of cysteine when Cadmium is not found at high concentrations.</p>
+
    <li><a href="#six" role="tab" data-toggle="tab">CysE*</a></li>
 +
</ul>
 +
<div class="tab-content">
 +
<div class="tab-pane active" id="one" class="collapse">
 +
<h2>pYodA</h2>
 +
<p>
 +
<b>Name:</b> pYodA (ZinTp) <br>
 +
<b>Organism:</b> <i>Escherichia Coli</i> <br>
 +
<b>Normal Function:</b> pYodA is a cadmium-induced promoter that activates the yodA(zinT) gene, leading to the production of ZinT metal-binding protein.<br>
 +
<b>Aim:</b> We are using pYodA in an alternative way; to regulate the expression of the CysP gene (sulfate transporter) and the NRAMP gene (Cadmium transporter). Due to using pYodA, the expression of these two genes will be regulated by the concentration of Cadmium in the extracellular environment. The over-production of Cysteine will only occur when the concentration of Cadmium reaches the sensitivity threshold of pYodA. Due to cysteine production being both energetically demanding and toxic at high concentrations, we do not want these genes to be expressed constitutively. <br>
 +
<b>Characterisation:</b> In order to characterise pYodA, we will couple it with a GFP gene. This will allow us to calculate the sensitivity threshold of pYodA and measure the amount of cadmium that can be chelated at various concentrations. <br>
 +
<b>Literature:</b>
 +
<ol>
 +
<li>http://mic.sgmjournals.org/content/148/12/3801.long</li>
 +
<li>http://www.uniprot.org/uniprot/F4VWH2</li>
 +
<li>http://sbkb.org/uid/F4VWH2/uniprot#structures</li>
 +
<li>http://www.jbc.org/content/278/44/43728</li>
 +
<li>http://biocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=G7061</li>
 +
</ol>
 +
</p>
</div>
</div>
 +
 +
<div class="tab-pane" id="two" class="collapse">
 +
<h2>NRAMP</h2>
 +
<p>
 +
<b>Gene:</b> mntH<br>
 +
<b>Organism:</b> <i>Escherichia Coli</i><br>
 +
<b>Protein:</b> NRAMP<br>
 +
<b>Function:</b> NRAMP is a membrane divalent metal-ion transporter. In addition to iron and manganese, it also transports Cd ions into the cell.<br>
 +
<b>Aim:</b> We want to use the endogenous transporter NRAMP to take up the cadmium from the environment. The cadmium will then activate pYoda and set off the phytochelatin synthesis process.<br>
 +
<b>Expression:</b> We can run assays measuring the concentration of cadmium in the environment. If NRAMP is active, the concentration of cadmium should decrease.<br></p></div>
 +
 +
<div class="tab-pane" id="three" class="collapse">
 +
 +
<h2>CysP</h2>
 +
<p>
 +
<b>Gene:</b> cysP (AKA YlnA) <br>
 +
<b>Organism:</b> <i>Bacillus Subtilis</i> <br>
 +
<b>Protein:</b> CysP <br>
 +
<b>Function:</b> This gene encodes for CysP, a sulfate/thiosulfate ABC transporter found in the periplasmic space. <br>
 +
<b>Aim:</b> We want to overexpress this gene in E.coli. This would lead to increased sulfate uptake, which could be used to produce cysteine and eventually phytochelatins that would bind cadmium. <br>
 +
<b>Expression:</b> We could run assays measuring the concentration of sulfate in the environment containing our bacteria. <br>
 +
</p>
 +
 +
</div>
 +
 +
<div class="tab-pane" id="six" class="collapse">
 +
<h2>CysE*</h2>
 +
<p>
 +
<b>Original Gene:</b> cysE<br>
 +
<b>Mutant Gene:</b> cysE*<br>
 +
<b>Organism:</b> <i>Escherichia Coli</i> <br>
 +
<b>Protein:</b> CysE(SAT)<br>
 +
<b>Normal function:</b> To catalyse the acetylation of L-serine (the first step in cysteine biosynthesis)<br>
 +
<b>Function:</b> Serine acetyltransferase (CysE) carries out the first step in cysteine biosynthesis; it  catalyses the acetylation of L-serine which generates O-acetyl-L-serine. Cysteine itself strongly inhibits the activity of serine acetyltransferase by binding to the serine-binding site. This inhibition depends on the protein's carboxy terminus, and has been localized to Met-256 specifically. Due to cysteine production being both energetically demanding and toxic at high concentrations, the cell does not want to produce cysteine constitutively.<br>
 +
<b>Aim:</b> To over-produce cysteine.To fulfill this aim, we need to remove negative feedback from cysteine biosynthesis. To do this, we are using a mutant CysE gene (CysE*). Our mutant CysE gene will produce a protein that has a single amino acid substitution: Met-256 will be replaced by Ile by changing the corresponding AUG codon to AUC. This single amino-acid substitution will alter the three dimensional shape of the serine-binding site in our acetyltransferase. Changing the shape of the serine-binding site prevents cysteine from binding to it. Thus, our acetyltransferase will not be inhibited by cysteine. As a result, we will be able to over-produce cysteine in our cell.<br>
 +
<b>Method:</b> We had the cysE* gene synthesised to produce the mutant CysE* protein.<br>
 +
<b>Literature:</b>
 +
<ol>
 +
<li>http://aem.asm.org/content/66/10/4497.full</li>
 +
<li>Denk D., Bock A. <i>J. Gen. Microbiol</i>, 1987</li>
 +
</ol></p></div>
 +
 +
<div class="tab-pane" id="five" class="collapse">
 +
<h2>Gsh1*</h2>
 +
<p>
 +
<b>Original Gene:</b> gsh1/gshA<br>
 +
<b>Organism:</b> <i>Saccharomyces cerevisiae</i><br>
 +
<b>Protein:</b> Glutamate-Cysteine Ligase (previously known as gamma-glutamylcysteine synthetase)<br>
 +
<b>Function:</b> Gamma glutamylcysteine synthetase catalyzes the first step in glutathione (GSH) biosynthesis;<br>
 +
L-glutamate + L-cysteine + ATP -> gamma-glutamyl cysteine + ADP + Pi<br>
 +
Expression is induced by oxidants, cadmium, and mercury. Protein abundance increases in response to DNA replication stress.<br>
 +
<b>Aim:</b> We can use the overproduced cysteine to make gamma-glutamyl cysteine, which is the monomer that forms phytochelatins (n=10-20). In order to do this, we need glutamate-cysteine ligase to catalyse the reaction. We can overexpress GSH1* using the pYodA promoter. <br>
 +
<b>Literature:</b><ol><li>http://biocyc.org/YEAST/NEW-IMAGE?type=GENE-IN-MAP-IN-PWY&object=YJL101C</li></ol></p></div>
 +
 +
<div class="tab-pane" id="four" class="collapse">
 +
<h2>spPCS</h2>
 +
<p>
 +
<b>Gene:</b> spPCS<br>
 +
<b>Organism:</b> <i>Schizosaccharomyces pombe</i><br>
 +
<b>Function:</b> The phytochelatin synthase in S. pombe uses glutathione with a blocked thiol group  to synthesise phytochelatins.<br>
 +
<b>Aim:</b> Overexpression of this gene, together with Gsh1*, in E.coli has been shown to increase phytochelatin production and lead to a 7.5-times-higher Cd accumulation. We want to use this gene to make our bacteria more efficient in  taking up cadmium.<br>
 +
<b>Literature</b><ol><li>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075016/</li></ol></p></div>
 +
</div>
</div>
</div>
</div>
 +
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<!--  THE PAGE HAS ENDED. THE FOOTER BEGINS.  -->
<!--  THE PAGE HAS ENDED. THE FOOTER BEGINS.  -->
-
<nav class="navbar navbar-default navbar-static-bottom" id="yorkfooter">
+
<nav class="navbar navbar-default navbar-static-bottom" role="contact" id="yorkfooter">
   <div class="container">
   <div class="container">
     <a href="http://www.york.ac.uk/biology/" class="navbar-brand img-responsive">
     <a href="http://www.york.ac.uk/biology/" class="navbar-brand img-responsive">
       <img src="https://static.igem.org/mediawiki/2014/4/4c/Uoylogo.png" id="bottomyorklogo">
       <img src="https://static.igem.org/mediawiki/2014/4/4c/Uoylogo.png" id="bottomyorklogo">
     </a>
     </a>
 +
  </div>
</nav>
</nav>
   </body>
   </body>
</html>
</html>

Revision as of 23:32, 15 October 2014

Team York 2014


Constructs




pYodA

Name: pYodA (ZinTp)
Organism: Escherichia Coli
Normal Function: pYodA is a cadmium-induced promoter that activates the yodA(zinT) gene, leading to the production of ZinT metal-binding protein.
Aim: We are using pYodA in an alternative way; to regulate the expression of the CysP gene (sulfate transporter) and the NRAMP gene (Cadmium transporter). Due to using pYodA, the expression of these two genes will be regulated by the concentration of Cadmium in the extracellular environment. The over-production of Cysteine will only occur when the concentration of Cadmium reaches the sensitivity threshold of pYodA. Due to cysteine production being both energetically demanding and toxic at high concentrations, we do not want these genes to be expressed constitutively.
Characterisation: In order to characterise pYodA, we will couple it with a GFP gene. This will allow us to calculate the sensitivity threshold of pYodA and measure the amount of cadmium that can be chelated at various concentrations.
Literature:

  1. http://mic.sgmjournals.org/content/148/12/3801.long
  2. http://www.uniprot.org/uniprot/F4VWH2
  3. http://sbkb.org/uid/F4VWH2/uniprot#structures
  4. http://www.jbc.org/content/278/44/43728
  5. http://biocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=G7061

NRAMP

Gene: mntH
Organism: Escherichia Coli
Protein: NRAMP
Function: NRAMP is a membrane divalent metal-ion transporter. In addition to iron and manganese, it also transports Cd ions into the cell.
Aim: We want to use the endogenous transporter NRAMP to take up the cadmium from the environment. The cadmium will then activate pYoda and set off the phytochelatin synthesis process.
Expression: We can run assays measuring the concentration of cadmium in the environment. If NRAMP is active, the concentration of cadmium should decrease.

CysP

Gene: cysP (AKA YlnA)
Organism: Bacillus Subtilis
Protein: CysP
Function: This gene encodes for CysP, a sulfate/thiosulfate ABC transporter found in the periplasmic space.
Aim: We want to overexpress this gene in E.coli. This would lead to increased sulfate uptake, which could be used to produce cysteine and eventually phytochelatins that would bind cadmium.
Expression: We could run assays measuring the concentration of sulfate in the environment containing our bacteria.

CysE*

Original Gene: cysE
Mutant Gene: cysE*
Organism: Escherichia Coli
Protein: CysE(SAT)
Normal function: To catalyse the acetylation of L-serine (the first step in cysteine biosynthesis)
Function: Serine acetyltransferase (CysE) carries out the first step in cysteine biosynthesis; it catalyses the acetylation of L-serine which generates O-acetyl-L-serine. Cysteine itself strongly inhibits the activity of serine acetyltransferase by binding to the serine-binding site. This inhibition depends on the protein's carboxy terminus, and has been localized to Met-256 specifically. Due to cysteine production being both energetically demanding and toxic at high concentrations, the cell does not want to produce cysteine constitutively.
Aim: To over-produce cysteine.To fulfill this aim, we need to remove negative feedback from cysteine biosynthesis. To do this, we are using a mutant CysE gene (CysE*). Our mutant CysE gene will produce a protein that has a single amino acid substitution: Met-256 will be replaced by Ile by changing the corresponding AUG codon to AUC. This single amino-acid substitution will alter the three dimensional shape of the serine-binding site in our acetyltransferase. Changing the shape of the serine-binding site prevents cysteine from binding to it. Thus, our acetyltransferase will not be inhibited by cysteine. As a result, we will be able to over-produce cysteine in our cell.
Method: We had the cysE* gene synthesised to produce the mutant CysE* protein.
Literature:

  1. http://aem.asm.org/content/66/10/4497.full
  2. Denk D., Bock A. J. Gen. Microbiol, 1987

Gsh1*

Original Gene: gsh1/gshA
Organism: Saccharomyces cerevisiae
Protein: Glutamate-Cysteine Ligase (previously known as gamma-glutamylcysteine synthetase)
Function: Gamma glutamylcysteine synthetase catalyzes the first step in glutathione (GSH) biosynthesis;
L-glutamate + L-cysteine + ATP -> gamma-glutamyl cysteine + ADP + Pi
Expression is induced by oxidants, cadmium, and mercury. Protein abundance increases in response to DNA replication stress.
Aim: We can use the overproduced cysteine to make gamma-glutamyl cysteine, which is the monomer that forms phytochelatins (n=10-20). In order to do this, we need glutamate-cysteine ligase to catalyse the reaction. We can overexpress GSH1* using the pYodA promoter.
Literature:

  1. http://biocyc.org/YEAST/NEW-IMAGE?type=GENE-IN-MAP-IN-PWY&object=YJL101C

spPCS

Gene: spPCS
Organism: Schizosaccharomyces pombe
Function: The phytochelatin synthase in S. pombe uses glutathione with a blocked thiol group to synthesise phytochelatins.
Aim: Overexpression of this gene, together with Gsh1*, in E.coli has been shown to increase phytochelatin production and lead to a 7.5-times-higher Cd accumulation. We want to use this gene to make our bacteria more efficient in taking up cadmium.
Literature

  1. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075016/