Team:ULB-Brussels/Modelling/TA-System
From 2014.igem.org
(Difference between revisions)
m |
m |
||
(47 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
{{Http://2014.igem.org/Team:ULB-Brussels/Template}} | {{Http://2014.igem.org/Team:ULB-Brussels/Template}} | ||
- | mv to | + | <!-- mv to |
Intro page: [https://2014.igem.org/Team:ULB-Brussels/Modelling] | Intro page: [https://2014.igem.org/Team:ULB-Brussels/Modelling] | ||
Previous page: [https://2014.igem.org/Team:ULB-Brussels/Modelling/Population-Dynamics] | Previous page: [https://2014.igem.org/Team:ULB-Brussels/Modelling/Population-Dynamics] | ||
Concl page: [https://2014.igem.org/Team:ULB-Brussels/Modelling/Conclusion] | Concl page: [https://2014.igem.org/Team:ULB-Brussels/Modelling/Conclusion] | ||
+ | --> | ||
+ | |||
<html> | <html> | ||
<script type="text/javascript"src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | <script type="text/javascript"src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | ||
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]} });</script> | <script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]} });</script> | ||
- | <head> | + | <head> |
Line 18: | Line 20: | ||
<tr style="background-color:rgb(245,245,245);"><td> | <tr style="background-color:rgb(245,245,245);"><td> | ||
<section style="text-align: justify; margin: 50px"> | <section style="text-align: justify; margin: 50px"> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
Line 82: | Line 44: | ||
<img src="https://static.igem.org/mediawiki/2014/6/66/MightyColi-Sch-v2-Coli-0.png"> | <img src="https://static.igem.org/mediawiki/2014/6/66/MightyColi-Sch-v2-Coli-0.png"> | ||
</center></p> | </center></p> | ||
- | <font size="1"><b>Figure | + | <font size="1"><b>Figure m4a </b>: This diagram illustrates the production of F2A peptid and GFP fluorescent protein controlled by PSK, in the case of TA ccdBA system in E.Coli. </font> |
</section> | </section> | ||
- | As we explained in the introduction page of our project, ccdB is an inhibitor of the DNA gyrase, so it binds the subunit A of the DNA gyrase complex when it | + | As we explained in the introduction page of our project, ccdB is an inhibitor of the DNA gyrase, so it binds the subunit A of the DNA gyrase complex when it is bound to DNA. |
- | When DNA double strand is broken, there is activation of SOS emergency signals. | + | When DNA double strand is broken, there is activation of SOS emergency signals. Here, the point is: if the DNA gyrase cannot protect itself against ccdB by a mutation (some events are possible, but very rare) or if the antidote is degraded (very frequent because ccdA is unstable in comparison with ccdB), the death of a bacterium in unavoidable. It is why we usually say that bacteria are addicted to the antitoxin to survive.</p> |
<section style="text-align: justify; margin: 25px"></section> | <section style="text-align: justify; margin: 25px"></section> | ||
Line 101: | Line 63: | ||
<img src="https://static.igem.org/mediawiki/2014/5/5a/MightyColi-Sch-v2-Cerev-0.png"> | <img src="https://static.igem.org/mediawiki/2014/5/5a/MightyColi-Sch-v2-Cerev-0.png"> | ||
</center></p> | </center></p> | ||
- | <font size="1"><b>Figure | + | <font size="1"><b>Figure m4b </b>: This diagram illustrates the production of F2A peptid and GFP fluorescent protein controlled by PSK (post-segregational killing), in the case of TA Kid/Kis system in S.Cerevisae. </font> |
</section> | </section> | ||
Line 147: | Line 109: | ||
NB:$\hspace{0.06cm}$ We have chosen a Michaelis-Menten kinetics, maybe a higher Hill coefficient would be desirable.</p> | NB:$\hspace{0.06cm}$ We have chosen a Michaelis-Menten kinetics, maybe a higher Hill coefficient would be desirable.</p> | ||
- | Because we | + | Because we will preserve some fragment of the population, it is necessary to controle its level. In practical, different parameters are introduced in the mathematical model to describe all the configurations of the biological system (in the equations above, the parameters are the constants $\hspace{0.04cm}\small\mathcal{K}\normalsize_{j}\hspace{0.02cm}$ and the velocities $\hspace{0.04cm}v_{j}\hspace{0.06cm}$). |
These parameters influence the global dynamics of the TA system, with or without an additional proline via p2A.</p> | These parameters influence the global dynamics of the TA system, with or without an additional proline via p2A.</p> | ||
By modelling and by comparison with experiments, we hope to obtain finally a model close to the reality.</p> | By modelling and by comparison with experiments, we hope to obtain finally a model close to the reality.</p> | ||
Line 158: | Line 120: | ||
<section style="text-align: justify; margin: 50px"> | <section style="text-align: justify; margin: 50px"> | ||
At the stationary state, the quantities $\hspace{0.1cm}\mathbb{A}\hspace{0.04cm}$, $\hspace{0.04cm}\mathbb{C}\hspace{0.04cm}$, $\hspace{0.04cm}\mathbb{T}\hspace{0.04cm}$, $\hspace{0.04cm}\mathbb{G}\hspace{0.1cm}$ | At the stationary state, the quantities $\hspace{0.1cm}\mathbb{A}\hspace{0.04cm}$, $\hspace{0.04cm}\mathbb{C}\hspace{0.04cm}$, $\hspace{0.04cm}\mathbb{T}\hspace{0.04cm}$, $\hspace{0.04cm}\mathbb{G}\hspace{0.1cm}$ | ||
- | don't fluctuate in time. We | + | don't fluctuate in time. We will distinguish it with the symbol hat ^.</p> |
First, let's define some new quantities: | First, let's define some new quantities: | ||
Line 200: | Line 162: | ||
\hat{\TT} = \dfrac{\Gamma - V \hspace{0.06cm} \hat{\AA}}{v_{c} \hspace{0.06cm} \hat{\AA} - v} \\[0.1cm] | \hat{\TT} = \dfrac{\Gamma - V \hspace{0.06cm} \hat{\AA}}{v_{c} \hspace{0.06cm} \hat{\AA} - v} \\[0.1cm] | ||
\end{equation} | \end{equation} | ||
+ | <br> | ||
+ | </section> | ||
+ | |||
+ | |||
+ | <!-- start temporary comment | ||
+ | <section style="text-align: justify; margin: -30px"></section> | ||
+ | <h3 style="color: #4169E1">Chemical Response</h3> | ||
+ | |||
+ | <section style="text-align: justify; margin: -30px"></section> | ||
+ | <section style="text-align: left; margin: 50px"> | ||
+ | * (rem: now, in labo, pBAD remplaces T7)</p> | ||
+ | </section> | ||
+ | <section style="text-align: justify; margin: -60px"></section> | ||
+ | <section style="text-align: justify; margin: 80px"> | ||
+ | $\underline{ara}$ (inductor) activates the ARN transcription via pBAD : | ||
+ | \begin{equation} | ||
+ | \Rightarrow \left( v_{s_{j}} \dfrac{a}{a + K_{j}} \right) . | ||
+ | \end{equation} | ||
+ | $\underline{glu}$ (repressor) represses the ARN transcription via pBAD: | ||
+ | \begin{equation} | ||
+ | \Rightarrow \left( v_{s_{j}} \dfrac{K_{j}}{\mathrm{g} + K_{j}} \right) | ||
+ | \end{equation} | ||
+ | $\hspace{0.05cm}chemical \hspace{0.2cm} equas\hspace{0.05cm}$ in elementary processes : | ||
+ | \begin{align*} | ||
+ | n\hspace{0.15cm} (A \hspace{0.25cm}+\hspace{0.3cm} T) \hspace{0.15cm}&\rightarrow^{v_{a/n}}\hspace{0.3cm} C & | ||
+ | \hspace{0.5cm} A \hspace{0.3cm}&\rightarrow^{v_{d_{1}}} \hspace{0.3cm} X \\ | ||
+ | C \hspace{0.3cm}-\hspace{0.3cm} A \hspace{0.3cm}&\rightarrow^{v_{D_{4}}} \hspace{0.3cm} 2T \hspace{0.3cm}+\hspace{0.3cm} A & | ||
+ | \hspace{0.5cm} T \hspace{0.3cm}&\rightarrow^{v_{d_{2}}} \hspace{0.3cm} Y \\ | ||
+ | C \hspace{0.3cm}-\hspace{0.3cm} T \hspace{0.3cm}&\rightarrow^{v_{D_{3}}} \hspace{0.3cm} 2A \hspace{0.3cm}+\hspace{0.3cm} T & | ||
+ | \hspace{0.5cm} G \hspace{0.3cm}&\rightarrow^{v_{d_{5}}} \hspace{0.3cm} Z \\ | ||
+ | \end{align*} | ||
+ | this signify that | ||
+ | $\hspace{0.3cm}\dfrac{v_{D_{3}}}{2} + v_{D_{4}} = 2 v_{d_{3}} \hspace{0.25cm}$<i>(increasing of 2 A)</i>$ \hspace{0.2cm}$ | ||
+ | $\small \& \normalsize$ $\hspace{0.2cm}\dfrac{v_{D_{4}}}{2} + v_{D_{3}} = 2 v_{d_{4}} \hspace{0.25cm}$<i>(increasing of 2 T)</i>$ \hspace{0.1cm}$; </p> | ||
+ | so this is similar to the two recuperation equations for A and T like: | ||
+ | \begin{array} . | ||
+ | \Longrightarrow &C \hspace{0.3cm}\rightarrow^{v_{d_{3}}} \hspace{0.3cm} A \\ | ||
+ | \Longrightarrow &C \hspace{0.3cm}\rightarrow^{v_{d_{4}}} \hspace{0.3cm} T | ||
+ | \end{array} | ||
+ | --> | ||
+ | </section> | ||
+ | <!-- <section style="text-align: right">voilou.</section> --> | ||
+ | <section style="text-align: justify; margin: -50px"></section> | ||
+ | <!-- temporary comment ended--> | ||
Line 210: | Line 216: | ||
\end{array} --> | \end{array} --> | ||
- | + | </table> | |
- | </table | + | |
- | </ | + | |
+ | </tr> | ||
+ | <font color="white"> | ||
+ | </font> | ||
<!-- previous and next pages --> | <!-- previous and next pages --> | ||
- | <tr style="background-color:rgb(204,214,234);"> | + | <tr style="background-color:rgb(204,214,234);"><td> |
- | <section style="text-align: left"><a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/Population-Dynamics"><b> < Population Dynamics </b></a> | + | <section style="text-align: left"> |
- | + | <a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/Population-Dynamics"><b> < Population Dynamics </b></a> | |
- | <a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/2A-Peptid"><b> 2A Pep> </b></a> | + | </section> |
- | < | + | <section style="text-align: right"> |
+ | <a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/2A-Peptid"><b> 2A Pep > </b></a> | ||
+ | </section></tr> | ||
+ | |||
+ | <tr><td><br/><br/></td></tr> | ||
+ | </th></tr> | ||
+ | |||
+ | </div> |
Latest revision as of 19:23, 15 October 2014
$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \newcommand{\MyColi}{{\small Mighty\hspace{0.12cm}Coli}} \newcommand{\Stabi}{\small Stabi}$ $\newcommand{\EColi}{\small E.coli} \newcommand{\SCere}{\small S.cerevisae}\\[0cm] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \newcommand{\PI}{\small PI}$ $\newcommand{\Igo}{\Large\mathcal{I}} \newcommand{\Tgo}{\Large\mathcal{T}} \newcommand{\Ogo}{\Large\mathcal{O}} ~$
| |
---|