Team:StanfordBrownSpelman/Amberless Hell Cell

From 2014.igem.org

(Difference between revisions)
(Edited introduction)
Line 66: Line 66:
<b>1.</b> The "Hell Cell" project by the 2012 Stanford-Brown iGEM team isolated genes from extremophile bacterial species and inserted them into <i>Escherichia coli</i>, in order to create bacteria that are resistant to extremes in pH, temperature, and moisture. We sought to further characterize, improve, and search for new resistance genes that would help our chassis survive in earth and space applications.  
<b>1.</b> The "Hell Cell" project by the 2012 Stanford-Brown iGEM team isolated genes from extremophile bacterial species and inserted them into <i>Escherichia coli</i>, in order to create bacteria that are resistant to extremes in pH, temperature, and moisture. We sought to further characterize, improve, and search for new resistance genes that would help our chassis survive in earth and space applications.  
  <br><br>
  <br><br>
-
<b>2.</b> The <a href="http://arep.med.harvard.edu/" target="_blank">Church Lab</a> at Harvard Medical School in 2013 created a strain of <i>E. coli</i> <a href="https://www.addgene.org/49018/" target="_blank">(C321.ΔA)</a> in which all 321 instances of the UAG ("Amber") stop codon in the <i>E. coli</i> genome had been replaced with the UAA stop codon<sup>1</sup>. Release factor 1, which terminates translation at UAG, was also removed. With this system, the Church group incorporated artificial amino acids with a tRNA that recognizes UAG as its codon.  
+
<b>2.</b> The <a href="http://arep.med.harvard.edu/" target="_blank">Church Lab</a> at Harvard Medical School in 2013 created a strain of <i>E. coli</i> <a href="http://www.addgene.org/49018/" target="_blank">(C321.ΔA)</a> in which all 321 instances of the UAG ("Amber") stop codon in the <i>E. coli</i> genome had been replaced with the UAA stop codon<sup>1</sup>. Release factor 1, which terminates translation at UAG, was also removed. With this system, the Church group incorporated artificial amino acids with a tRNA that recognizes UAG as its codon.  
<br><br>
<br><br>
We developed a novel approach for preventing horizontal transfer of engineered genes into the environment by inserting a UAG-leucine tRNA, and using UAG for leucine in all of the inserted, engineered genes. Because these genes will not be read correctly in other organisms (the UAG will be read as stop, so proteins will be truncated), the engineered genes will not have any effect in naturally-occurring bacteria in the environment. Our project will involve synthesizing UAG-leucine coded versions of the Hell Cell genes and inserting them into the amberless <i>E. coli</i> strain, along with a UAG-leucine tRNA. This will create a strain of bacteria that is both resilient and safe for environmental applications, for example as a biosensor added to the BCOAc membrane using the biotin/streptavidin interaction mentioned above.
We developed a novel approach for preventing horizontal transfer of engineered genes into the environment by inserting a UAG-leucine tRNA, and using UAG for leucine in all of the inserted, engineered genes. Because these genes will not be read correctly in other organisms (the UAG will be read as stop, so proteins will be truncated), the engineered genes will not have any effect in naturally-occurring bacteria in the environment. Our project will involve synthesizing UAG-leucine coded versions of the Hell Cell genes and inserting them into the amberless <i>E. coli</i> strain, along with a UAG-leucine tRNA. This will create a strain of bacteria that is both resilient and safe for environmental applications, for example as a biosensor added to the BCOAc membrane using the biotin/streptavidin interaction mentioned above.
References:
References:
-
1. Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FI (2013) Genomically Recoded Organisms Impart New Biological Functions. Science 342: 357-60. PMID: 24136966.
+
1. Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FI (2013) Genomically Recoded Organisms Impart New Biological Functions. Science 342: 357-60. PMID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/24136966" target="_blank">24136966</a>.
   </h6>
   </h6>
   </div>
   </div>

Revision as of 17:32, 10 October 2014

Stanford–Brown–Spelman iGEM 2014 — Amberless Hell Cell

  • Image description goes here.

  • Image description goes here.

  • Image description goes here.


  • Image description goes here.

  • Image description goes here.

  • Image description goes here.
Results
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras venenatis lorem et odio sodales, vitae aliquet nunc ultrices. Nunc lacinia nulla urna, sed aliquam nisl fermentum sed. Phasellus vel pellentesque tortor, in tincidunt metus. Aliquam ac laoreet risus. Fusce venenatis, justo id luctus dictum, turpis libero tincidunt mauris, sit amet tempor lectus tortor ut ante. Pellentesque egestas felis et est venenatis, eget lobortis dui adipiscing. Suspendisse volutpat sem eu ornare tincidunt. Mauris pharetra sed justo vitae sodales. Nulla in sodales tortor, placerat tempor dui.
Methods & Safety
Fusce venenatis, justo id luctus dictum, turpis libero tincidunt mauris, sit amet tempor lectus tortor ut ante. Pellentesque egestas felis et est venenatis, eget lobortis dui adipiscing. Suspendisse volutpat sem eu ornare tincidunt. Mauris pharetra sed justo vitae sodales. Nulla in sodales tortor, placerat tempor dui.
Links & References
Suspendisse volutpat sem eu ornare tincidunt. Mauris pharetra sed justo vitae sodales. Nulla in sodales tortor, placerat tempor dui.
Additional Information
Try to avoid having any additional information here. We're trying to keep our site organized, clean, and compelling!
Built atop Foundation. Content &amp Development © Stanford–Brown–Spelman iGEM 2014.