Team:Brasil-SP/TheIssue/AvaliableSolutions

From 2014.igem.org

(Difference between revisions)
Line 1: Line 1:
-
<h3>AvaliableSolutions</h3>
+
<h3 align="center">AvaliableSolutions</h3>
<p><div align="justify">Kidney dysfunction is diagnosed through the evaluation of glomerular filtration rate in the kidney (GFR, measured in mL/min), in which the determination of serum creatinine concentration is the predominant method. Changes in the levels of creatinine are detectable only at later stages of renal dysfunction, when the kidney has already lost about 30% of its filtration efficiency. Moreover, the serum creatinine concentration is extremely sensitive to several variables such as diet, gender, ethnicity, age, muscle mass, and others; impairing significantly its correlation rate with the GFR. Moreover, some renal complications are asymptomatic, such as Chronic Kidney Disease (CKD), not allowing the diagnosis of the disease in its early stage. Therefore, there is a lack of tools with the precision and sensitivity needed to measure GFR in early stages of kidney disease. The urea nitrogen is also a biomarker used in the diagnosis of kidney disease, but like creatinine, it is only capable of detecting advanced stages.</div></p>
<p><div align="justify">Kidney dysfunction is diagnosed through the evaluation of glomerular filtration rate in the kidney (GFR, measured in mL/min), in which the determination of serum creatinine concentration is the predominant method. Changes in the levels of creatinine are detectable only at later stages of renal dysfunction, when the kidney has already lost about 30% of its filtration efficiency. Moreover, the serum creatinine concentration is extremely sensitive to several variables such as diet, gender, ethnicity, age, muscle mass, and others; impairing significantly its correlation rate with the GFR. Moreover, some renal complications are asymptomatic, such as Chronic Kidney Disease (CKD), not allowing the diagnosis of the disease in its early stage. Therefore, there is a lack of tools with the precision and sensitivity needed to measure GFR in early stages of kidney disease. The urea nitrogen is also a biomarker used in the diagnosis of kidney disease, but like creatinine, it is only capable of detecting advanced stages.</div></p>

Revision as of 18:13, 26 September 2014

AvaliableSolutions

Kidney dysfunction is diagnosed through the evaluation of glomerular filtration rate in the kidney (GFR, measured in mL/min), in which the determination of serum creatinine concentration is the predominant method. Changes in the levels of creatinine are detectable only at later stages of renal dysfunction, when the kidney has already lost about 30% of its filtration efficiency. Moreover, the serum creatinine concentration is extremely sensitive to several variables such as diet, gender, ethnicity, age, muscle mass, and others; impairing significantly its correlation rate with the GFR. Moreover, some renal complications are asymptomatic, such as Chronic Kidney Disease (CKD), not allowing the diagnosis of the disease in its early stage. Therefore, there is a lack of tools with the precision and sensitivity needed to measure GFR in early stages of kidney disease. The urea nitrogen is also a biomarker used in the diagnosis of kidney disease, but like creatinine, it is only capable of detecting advanced stages.