Team:ITESM-CEM/Project
From 2014.igem.org
Line 73: | Line 73: | ||
<div style="background-color: #f3f3e2; style="width:95%"> | <div style="background-color: #f3f3e2; style="width:95%"> | ||
<br> | <br> | ||
+ | |||
<!--INICIO CONTENIDO--> | <!--INICIO CONTENIDO--> | ||
<h2>Project Description</h2> | <h2>Project Description</h2> | ||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2014/b/b6/Imagen.jpg" align="left" width="250" height="250" hspace="10"> | ||
<p> Cardiovascular disease has been identified as one of the leading causes of death worldwide, and particularly in North America. Cardiovascular disease is strongly associated with atherosclerotic plaque: the accumulation of oxidized lipids and foam cells over the inner layer of arteries; atherosclerotic plaque does not only affect the behaviour of factors as blood pressure, but is also a major cause of strokes and cardiovascular events. <br><br> | <p> Cardiovascular disease has been identified as one of the leading causes of death worldwide, and particularly in North America. Cardiovascular disease is strongly associated with atherosclerotic plaque: the accumulation of oxidized lipids and foam cells over the inner layer of arteries; atherosclerotic plaque does not only affect the behaviour of factors as blood pressure, but is also a major cause of strokes and cardiovascular events. <br><br> | ||
Formerly, atherosclerosis was strongly associated with the daily intake of cholesterol in products derived from an animal source; however, it has recently been shown that it is not cholesterol itself, but its oxidized derivatives which cause the development of atherosclerotic plaque. When cholesterol travels through the bloodstream, in the form of lipoproteins, it is susceptible to a variety of chemical reactions, among which oxidation caused by reactive oxygen species (ROS) is quite common. When cholesterol is oxidized, it can no longer undergo a normal metabolic control: it starts accumulating and the cells responsible for its degradation, the macrophages, are unable to metabolize it. This is the ultimate cause of Atherosclerosis. <br><br> | Formerly, atherosclerosis was strongly associated with the daily intake of cholesterol in products derived from an animal source; however, it has recently been shown that it is not cholesterol itself, but its oxidized derivatives which cause the development of atherosclerotic plaque. When cholesterol travels through the bloodstream, in the form of lipoproteins, it is susceptible to a variety of chemical reactions, among which oxidation caused by reactive oxygen species (ROS) is quite common. When cholesterol is oxidized, it can no longer undergo a normal metabolic control: it starts accumulating and the cells responsible for its degradation, the macrophages, are unable to metabolize it. This is the ultimate cause of Atherosclerosis. <br><br> | ||
+ | |||
A variety of oxidized cholesterol species exists, it is the purpose of this project to enhance the macrophage-mediated degradation of a particular molecule, namely 7-ketocholesterol. In order to perform this task, the genes encoding three microbial enzymes will be transformed into human macrophages. The enzymes were firstly isolated from two genres of bacteria which inhabit the soil, where they are exposed to death animal rests; this kind of organisms are then naturally able to metabolize the compounds accumulated in the bodies, as oxidized cholesterol. First, we are testing the functionality of the three recombinant enzymes in E. coli and the degradation rates showed on 7-ketocholesterol, after that we will be able to transform mammalian cells. <br><br> | A variety of oxidized cholesterol species exists, it is the purpose of this project to enhance the macrophage-mediated degradation of a particular molecule, namely 7-ketocholesterol. In order to perform this task, the genes encoding three microbial enzymes will be transformed into human macrophages. The enzymes were firstly isolated from two genres of bacteria which inhabit the soil, where they are exposed to death animal rests; this kind of organisms are then naturally able to metabolize the compounds accumulated in the bodies, as oxidized cholesterol. First, we are testing the functionality of the three recombinant enzymes in E. coli and the degradation rates showed on 7-ketocholesterol, after that we will be able to transform mammalian cells. <br><br> | ||
By using this approach, it is expected that the ability of macrophages to degrade 7-ketocholesterol will be increased at a genomic and metabolic level. Once suitable results are obtained, a new approach will be taken so that a therapy can be developed. | By using this approach, it is expected that the ability of macrophages to degrade 7-ketocholesterol will be increased at a genomic and metabolic level. Once suitable results are obtained, a new approach will be taken so that a therapy can be developed. |
Revision as of 16:57, 23 September 2014
ITESM-CEM | Enzy7-K me |
|
||||
Project
|
|||||
| |||||
|
|||||
|