Team:Goettingen/project overview/project
From 2014.igem.org
m |
|||
Line 13: | Line 13: | ||
<!-- right column--> | <!-- right column--> | ||
<div class="proRP" id="rpart1"> | <div class="proRP" id="rpart1"> | ||
- | <div id="goenext"><a href="https://2014.igem.org/Team:Goettingen/project_overview/current_tools"><img src='https://static.igem.org/mediawiki/2014/3/32/Goettingen2014-previous.png' width='40px'></a> 5/15 <a href="https://2014.igem.org/Team:Goettingen/project_overview/perspectives"><img src='https://static.igem.org/mediawiki/2014/e/ea/Goettingen2014-next.png' width='40px'></a></div><br /> | + | <div id="goenext"><a href="https://2014.igem.org/Team:Goettingen/project_overview/current_tools"><img src='https://static.igem.org/mediawiki/2014/3/32/Goettingen2014-previous.png' width='40px'></a> 5/15 <a href="https://2014.igem.org/Team:Goettingen/project_overview/perspectives"><img src='https://static.igem.org/mediawiki/2014/e/ea/Goettingen2014-next.png' width='40px'></a></div><br /><br /><br /> |
- | <h1 >Our project!</h1> | + | <h1><font color = "green"><center><b>Our project!</b></center></font></h1> |
- | <br /> | + | <br /><br /><br /> |
- | <h2>Paving the way for new diagnostic and therapeutic tools</h2> | + | <h2<>Paving the way for new diagnostic and therapeutic tools</h2> |
<p> | <p> | ||
Our aim is to develop a diagnostic technique based on artificially selected and modified peptides capable of detecting the presence of fungal pathogens in a sample collected from a patient. Briefly, our approach is as follows. Through a yeast two-hybrid assay we will select a set of peptides that show affinity towards surface proteins from different fungi (<i>Aspergillus nidulans</i>, <i>A. fumigatus</i>, <i>Candida albicans</i> and <i>C. glabrata</i>). After confirming the interaction between the surface proteins and a given peptide, we intend to attach a molecule to the peptide marker. In our project, this molecule will be a fluorescent protein, but in principle can also be an immune system activator which is then recognized by the immune cells or other chemical moiety that adds novel functionalities or increases the peptide stability.</p><br /> | Our aim is to develop a diagnostic technique based on artificially selected and modified peptides capable of detecting the presence of fungal pathogens in a sample collected from a patient. Briefly, our approach is as follows. Through a yeast two-hybrid assay we will select a set of peptides that show affinity towards surface proteins from different fungi (<i>Aspergillus nidulans</i>, <i>A. fumigatus</i>, <i>Candida albicans</i> and <i>C. glabrata</i>). After confirming the interaction between the surface proteins and a given peptide, we intend to attach a molecule to the peptide marker. In our project, this molecule will be a fluorescent protein, but in principle can also be an immune system activator which is then recognized by the immune cells or other chemical moiety that adds novel functionalities or increases the peptide stability.</p><br /> |
Revision as of 17:21, 19 September 2014
Project
Our project!
Paving the way for new diagnostic and therapeutic tools
Our aim is to develop a diagnostic technique based on artificially selected and modified peptides capable of detecting the presence of fungal pathogens in a sample collected from a patient. Briefly, our approach is as follows. Through a yeast two-hybrid assay we will select a set of peptides that show affinity towards surface proteins from different fungi (Aspergillus nidulans, A. fumigatus, Candida albicans and C. glabrata). After confirming the interaction between the surface proteins and a given peptide, we intend to attach a molecule to the peptide marker. In our project, this molecule will be a fluorescent protein, but in principle can also be an immune system activator which is then recognized by the immune cells or other chemical moiety that adds novel functionalities or increases the peptide stability.
Why peptides?
In comparison to antibodies or antibody fragments, peptides are small, easily synthesized, modified less expensively and show higher diffusion rates in tissues. We expect a diagnostic method based on small peptides to be more accurate and cheaper than other existing methods. We also expect it to have the potential for in vivo diagnosis. Furthermore, the adaptability of our approach allow other laboratories to follow it to generate and refine their own peptides with specificity towards their proteins of interest.