Team:LMU-Munich
From 2014.igem.org
Hoerldavid (Talk | contribs) |
Hoerldavid (Talk | contribs) |
||
Line 1: | Line 1: | ||
+ | {{CSS/Main}} | ||
<html> | <html> | ||
<link rel="stylesheet" type="text/css" href="https://preview.c9.io/loxos/igemlmu/home.css" /> | <link rel="stylesheet" type="text/css" href="https://preview.c9.io/loxos/igemlmu/home.css" /> | ||
<img src="https://preview.c9.io/loxos/igemlmu/img/home.jpg" /> | <img src="https://preview.c9.io/loxos/igemlmu/img/home.jpg" /> | ||
+ | </html> | ||
= „BaKillus“ – Engineering a pathogen-hunting microbe = | = „BaKillus“ – Engineering a pathogen-hunting microbe = | ||
Increasing bacterial resistance to classical antibiotics remains a serious threat and urges the development of novel pathogen-killing strategies. Exploiting bacterial communication mechanisms such as quorum sensing is a promising strategy to specifically target certain pathogens. The major aim of this project is the introduction of a genetic circuit enabling ''Bacillus subtilis'' to actively detect, attach to, and eventually kill ''Staphylococcus aureus'' and ''Streptococcus pneumoniae''. Initially, we will introduce the autoinducer-sensing two-component systems of ''S. aureus'' and ''S. pneumoniae'' into ''B. subtilis''. to create a pathogen-detecting strain. By utilizing quorum sensing-dependent promoters, we will then trigger pathogen-killing strategies like the production of antimicrobial peptides or biofilm degradation. As a safety measure a delayed suicide-switch guarantees non-persistence of genetically modified ''B. subtilis'' in the absence of pathogens. We envision the use of BaKillus as a smart, cheap and simple-to-use medical device for diagnostics and targeted treatment of multiresistant superbugs. | Increasing bacterial resistance to classical antibiotics remains a serious threat and urges the development of novel pathogen-killing strategies. Exploiting bacterial communication mechanisms such as quorum sensing is a promising strategy to specifically target certain pathogens. The major aim of this project is the introduction of a genetic circuit enabling ''Bacillus subtilis'' to actively detect, attach to, and eventually kill ''Staphylococcus aureus'' and ''Streptococcus pneumoniae''. Initially, we will introduce the autoinducer-sensing two-component systems of ''S. aureus'' and ''S. pneumoniae'' into ''B. subtilis''. to create a pathogen-detecting strain. By utilizing quorum sensing-dependent promoters, we will then trigger pathogen-killing strategies like the production of antimicrobial peptides or biofilm degradation. As a safety measure a delayed suicide-switch guarantees non-persistence of genetically modified ''B. subtilis'' in the absence of pathogens. We envision the use of BaKillus as a smart, cheap and simple-to-use medical device for diagnostics and targeted treatment of multiresistant superbugs. |
Revision as of 11:10, 19 September 2014
„BaKillus“ – Engineering a pathogen-hunting microbe
Increasing bacterial resistance to classical antibiotics remains a serious threat and urges the development of novel pathogen-killing strategies. Exploiting bacterial communication mechanisms such as quorum sensing is a promising strategy to specifically target certain pathogens. The major aim of this project is the introduction of a genetic circuit enabling Bacillus subtilis to actively detect, attach to, and eventually kill Staphylococcus aureus and Streptococcus pneumoniae. Initially, we will introduce the autoinducer-sensing two-component systems of S. aureus and S. pneumoniae into B. subtilis. to create a pathogen-detecting strain. By utilizing quorum sensing-dependent promoters, we will then trigger pathogen-killing strategies like the production of antimicrobial peptides or biofilm degradation. As a safety measure a delayed suicide-switch guarantees non-persistence of genetically modified B. subtilis in the absence of pathogens. We envision the use of BaKillus as a smart, cheap and simple-to-use medical device for diagnostics and targeted treatment of multiresistant superbugs.