Team:ETH Zurich/test

From 2014.igem.org

(Difference between revisions)
 
(3 intermediate revisions not shown)
Line 1: Line 1:
-
{{:Team:ETH Zurich/tpl/head}}
+
<html>
-
<html><div id="banner"></html>
+
<head><link rel="stylesheet" href="https://2014.igem.org/Team:ETH_Zurich/css/katex.min.css?action=raw&ctype=text/css" type="text/css"/></head>
-
== Hi. Thanks for visiting us, but we are not ready with this page yet. We hope you visit us again soon! ==
+
<script type="text/javascript" src="https://2014.igem.org/Team:ETH_Zurich/js/jquery.min.js?action=raw&ctype=text/javascript"></script>
 +
<script type="text/javascript" src="https://2014.igem.org/Team:ETH_Zurich/js/katex.min.js?action=raw&ctype=text/javascript"></script>
-
==== The iGEM team of ETH will soon tell you about their crazy project ! ====
+
 
-
+
 
-
[[File:Rule_teaser.png|center]]
+
 
-
{{:Team:ETH Zurich/tpl/foot}}
+
<span class="equation">\displaystyle c = \pm\sqrt{a^2 + b^2}</span>
 +
<div class="equation"> \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }</div>
 +
<div class="equation"> \displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) </div>
 +
<div class="equation">f(x) = \int_{-\infty}^\infty
 +
    \hat f(\xi)\,e^{2 \pi i \xi x}
 +
    \,d\xi
 +
</div>
 +
 
 +
 
 +
<script type="text/javascript">
 +
 
 +
$(document).ready(function(){
 +
 
 +
    $(".equation").each(function(){
 +
katex.render($(this).text(), this);
 +
    });
 +
});
 +
</script>
 +
</html>

Latest revision as of 19:22, 18 September 2014

\displaystyle c = \pm\sqrt{a^2 + b^2}

\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi