Team:ULB-Brussels/Modelling/Population-Dynamics

From 2014.igem.org

(Difference between revisions)
m
m
Line 41: Line 41:
<script type="text/javascript"src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript"src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
-->
-->
 +
 +
</tr>
 +
<font color="white">
 +
-Denis, remis en forme?..
 +
</font>
<!-- Previous and Next pages -->
<!-- Previous and Next pages -->

Revision as of 20:45, 3 September 2014

$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \newcommand{\MyColi}{{\small Mighty\hspace{0.12cm}Coli}} \newcommand{\Stabi}{\small Stabi}$ $\newcommand{\EColi}{\small E.coli} \newcommand{\SCere}{\small S.cerevisae}\\[0cm] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \newcommand{\PI}{\small PI}$ $\newcommand{\Igo}{\Large\mathcal{I}} \newcommand{\Tgo}{\Large\mathcal{T}} \newcommand{\Ogo}{\Large\mathcal{O}} ~$ Example of a hierarchical menu in CSS

carousel slider
-Denis, remis en forme?..





- Université Libre de Bruxelles -



Population Dynamics Model

A Population Dynamics Model can be fitted in our system. Theoretically, two approaches have been planned:

$1.1)$ $By$ $Probabilities$

When some new plasmids are genetically introduced into the cytoplasm of E.Coli bacteria, this doesn't garantee that the future copies will contain it. Indeed, these plasmids can be lost after cell division or replication, so it's interesting to study a model based on the different possibilities of plasmid combinations in bacteria, like in the studies of mutations in animals. A typical example of a similar way is found if we study the mutations of the eyes color in a family, by vertical genes transfer. In this case, there's a horizontal genes transfer too, originated by the plasmids.

A Probabilistic Model is util because easily undertsood, but necessits some assumptions.

$1.2)$ $By$ $Logistic$ $Equation$

The Logistic Equation was initially introduced during the beginning of the XIXth Century, by the belgian mathematician P.F. Verhulst. Now, this equation is mainly used in Population Dynamics Models, especially in Biological Sciences. Mathematicians currently finish Ph.D thesis using this, and the analytical Lotka-Volterra model is directly associated with the Verhulst theory.

Other models exist, f.e. by Monod equation, but this idea cannot be consistent with our global system.
< Overview
TA System >