LABNOTE-C

XMU-iGEM

Date: 9.1-9.30

Author: XMU-iGEM

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
	•	2	3	4	5	6
~	✓	~	~		12	
		16	17		12	20
21	22	23	24	25	26	27
28	29	30				

9 M														
										2	20	14		
1	2	3	4	5	6	7		1	2	3	4	5	6	7
8	9	10	11	12	13	14		8	9	10	11	12	13	14
15	16	17	18	19	20	21		15	16	17	18	19	20	21
22	23	24	25	26	27	28		22	23	24	25	26	27	28
29	30							29	30					
			8	B M	203	14 Y						10	И 2	014 Y

NOTE :	

Enzyme Restriction			
Pomp1	3I		108 bp
Pomp2	3K		78 bp
Pomp3	3E		108 bp
Single		Xba I	
Double		Xba I, Pst I	

• Verification: Agarose gel electrophoresis.

From left to the right: 100Marker-(3I Double)-(3I Single)-(3K Double)-(3K Single)-(3E Double)-(3E Single)-500Marker

• Enzyme Restriction

Р	Spe I, Pst I
2M+18G+4F	Xba I, Pst I

• Verification: Agarose gel electrophoresis

From left to the right: 100Marker-500Marker-3I-3K-1000Marker From left to the right: 100Marker-3E-(2M-18G-4F)-500Marker

	Centrifuge Tube	All	Agarose gel
3I(P1)	0.933 g	0979 g	0.046 g
3K(P2)	0.933 g	1.010 g	0.077 g
3E(P3)	0.905 g	0.992 g	0.087 g
2M-18G-4F	0.931 g	0.992 g	0.061 g

• Measure the Concentration of the Plasmids

	Absorbance: 260/280	Measurement(ng/µL)
2014-P4-6F	3.91/7.03/2.32/1.47	2.9/3.3/1.7/7.4
2013-P2-6F	8.4/0.79	3.3/2.9
K+B	2.97	2.8
3I	1.86/1.41/1.71/1.68	24.5/87.0/17.6/17.9
3K	1.91/2.21	22.9/22.9
3E	2.19/1.77/1.98	24.5/31.8/25.9

Ligation
3I+(2M-18G-4F)
3K+(2M-18G-4F)

The	12 h			24 h			36 h		
concentrat	The	The	Differe	The	The	Differe	The	The	Differe
ion	chemot	chemot	nce	chemot	chemot	nce	chemot	chemot	nce
gradients	axis	axis	(d1-	axis	axis	(d1-	axis	axis	(d1-
of Ara	diamete	diamete	d2)/cm	diamete	diamete	d2)/cm	diamete	diamete	d2)/cm
	r	rs away		r	rs away		r	rs away	
	toward	from		toward	from		toward	from	
	Ara	Ara		Ara	Ara		Ara	Ara	
	(d1)	(d2)		(d1)	(d2)		(d1)	(d2)	
	/cm	/cm		/cm	/cm		/cm	/cm	
0.2%	0.12	0.2	-0.08	0.45	0.35	-0.1	1.25	0.9	0.35
0.5%	0.15	0.3	-0.05	0.8	0.6	-0.2	2.15	1.35	0.8
1%	0.15	0.15	0	0.5	0.5	0	1.25	1.25	0.25
2%	0.15	0.25	-0.1	0.75	0.65	-0.1	1.7	1.7	0.3

3E+(2M-18G-4F)

Lux pR+(RBS+GFP+TT)

Lux pR+(RBS+Lux)

• The Experiment Plan:

With 0.05% IPTG, 50 $\mu g/ml$ Cm to to verify the concentration gradient of Ara in the method of single-point.

• Aim:

We want to know the most appropriate concentration of Ara for *E. coli* form the pattern of hyperbola.

- 1: 500 bp marker;
- 2: BBa_R0082 with double digestion(SP);
- 3: BBa_R0083 with double digestion(SP);
- 4: 1kb marker;

Purpose: Respective preparation for the connection between BBa_R0082, BBa_R0083, BBa_R0084 and BBa_B0034 + BBa_K629003 + BBa_B0015.

Results/discussion: We used the plasmids which contain promoter as the backbone, so we digested the plasmid containing BBa_R0082, BBa_R0083 and BBa_R0084 with *Spe* I and *Pst* I enzyme. While we used the BBa_B0034+BBa_K629003+BBa_B0015 as the insert gene, whose length is 800 bp. so we digested the plasmids with *Xba* I and *Pst* I enzyme. Finally we could confirm that the plasmid were all we want to get.

- The Experiment Plan With 50 μg/ml Cm, 1%Ara and the concentration gradients of IPTG are 0.1 mM, 0.25 mM, 0.5 mM, 1 mM.
- Aim

We wanted to find the most appropriate concentration of IPTG.

Conclusion

The most appropriate concentration is 0.25 mM.

	7 0	1: 100 bp marker;
1 2 3 4 5 6	/ 8	2: BBa_I20260 with single digestion(12-P2-17F)(1);
		3: BBa_I20260 with double digestion(12-P2-17F)(1);
		4: BBa_I20260 with single digestion(12-P2-17F)(2);
		5: BBa_I20260 with double digestion(12-P2-17F)(2);
		6: BBa_I20260 with single digestion(12-P2-17F)(3);
	State Street	7: BBa_I20260 with double digestion(12-P2-17F)(3);
	2000	8: 1kb marker.
1000		(1, 2, 3 are the different colonies.)
1000	1000	Purpose: The verification of the BBa_I20260
		BioBrick.
500		Results/discussion: From this figure, we could find
		that the fragments that were from single digestion
D '		was longer than double digestion. However we
Figure 6		couldn't get a band near 1000 bp, which is the length
		of J23101+RBS0032+GFP+TT. So we couldn't
		confirm that the BBa_I20260 was correct.

					1: 100 bp marker;
1 2	3	4	5	6	2: BBa_K1412924+pSB3K3(1) with single digestion; 2: BBa_K1412924+pSB3K3(1) with double digestion;
					2: BBa_K1412924+pSB3K3(2) with single digestion;
					3: BBa_K1412924+pSB3K3(2) with double digestion;
				Surger State	6: 1kb marker.
			200	0	(1, 2 are different colonies.)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
1000			100	0	Purpose: the verification of BBa_K1412924+pSB3K3
					connection system.
500					Results/discussion: From this figure, we could find
**					that the fragments were from single digestion was
					1000 bp longer than double digestion. While we
					couldn't get a band near 1000 bp, which is the length
					of J23101+RBS0032+GFP+TT. So we couldn't
	Figur	e 8			confirm that the connection system was correct.

Enzyme Restriction

Xba I, Pst I

Verification: Agarose gel electrophoresis

500 = = = = = = = = = = = = = = = = = =	1 2 3 4 5 1000 500	6 2000 1000	7 8 9 1	1 12
Figure 10		Figure 10		500
1: 100 bp marker; 2: PART1 with double digestion(1 XP); 3: PART1 with single digestion (1 X); 4: PART3 with double digestion (1 XP); 5: PART3 with single digestion (1 X); 6: 500 bp marker; 7: 100 bp marker; 8: PART2 with double digestion (1 XP); 9: PART2 with single digestion (1 XP); 9: PART2 with single digestion (2 XP); 11: PART2 with single digestion (2 X); 12: 500bp marker. (PART1=BBa_R0082+BBa_B0034+BBa_K629003+BBa_B0015 PART2=BBa_R0083+BBa_B0034+BBa_K629003+BBa_B0015 PART3=BBa_R0083+BBa_B0034+BBa_K629003-BBa_B0015 (1, 2 are different colonies.) Purpose: The verification of the connection systems: BBa_R0082+BBa_B0034+BBa_K629003+BBa_B0015 BBa_R0083+BBa_B0034+BBa_K629003+BBa_B0015. Results/discussion: The lengths of BBa_R0083+BBa_B0034+BBa_K629003+BBa_B0015 BBa_R0084+BBa_B0034+BBa_K629003+BBa_B0015 and BBa_R0084+BBa_B0034+BBa_K629003+BBa_B0015 and BBa_R0083+BBa_B0034+BBa_K629003+BBa_B0015 and BBa_R0083+BBa_B0034+BBa_K629003+BBa_B0015 and BBa_R0083+BBa_B0034+BBa_K629003+BBa_B0015 and BBa_R0083+BBa_B0034+BBa_K629003+BBa_B0034+BBa_K629003+BBa_B0035, we found the band with double digestion and single digestion are the same, so our connection system was correct. Aboul connection system BBa_R0084+BBa_K629003+BBa_B0015(1), we found the band near 1000 bp with double digestion. And the band with sing	1: 100 bp marker; 2: PART1 with dot 3: PART1 with single digestion (1 X); 5: PART3 with single digestion (1 X); 6: 500 bp marker; 7: 100 bp marker; 8: PART2 with double digestion (1 X); 10: PART2 with single digestion (2 X); 11: PART2 with single digestion (2 X); 12: 500bp marker. (PART1=BBa_R0082+BBa_B0034+BB; PART2=BBa_R0083+BBa_B0034+BB; (1, 2 are different colonies.) Purpose: The verification of the con BBa_R0083+BBa_B0034+BBa_K6290 BBa_R0084+BBa_B0034+BBa_K6290 Results/discussion: The len BBa_R0082+BBa_B0034+BBa_K6290 could get a band during BBa_R0083+BBa_B0034+BBa_K6290 could get a band during BBa_R0083+BBa_B0034+BBa_K6290 single digestion was longer than the connection system BBa_R0084+BBa_K6290 digestion and single digestion are BBa_R0082+BBa_B0034+BBa_K6290 digestion. And the band with single digestion.	uble digestion(1 XP); 4: PART3 with double (); P); Ba_K629003+BBa_B0015 a_K629003+BBa_B0015 a_K629003-BBa_B0015) anection systems: BBa_F 03+BBa_B0015 003+BBa_B0015. ogths of BBa_F 003+BBa_B0015 were 88 500 bp and 100 003+BBa_B0015 was dige e length of backbone. S _B0034+BBa_K629003+ the same, so our conn 003+BBa_B0015(1), we igestion was longer than	digestion (1 XP); 5 5 80082+BBa_B0034+B 80083+BBa_B0034+B 86 bp, 916 bp and 916 90 bp when th ested with double enz So the connection sy BBa_B0015, we four nection failed. As fo found the band near double digestion. So	Ba_K629003+BBa_B0015, and Ba_K629003+BBa_B0015, and 6 bp. From the figure, we be connection system yme. While the band with ystem was correct. About nd the band with double or the connection system ar 1000 bp with double we could confirm that the

1. 500 bp Marker;

2. Single enzyme digestion (Pst I) with BBa_I20260 (reconstructed by XMU-China). Sample 1;

3. Double enzymes digestion (*EcoR* I and *Pst* I) with BBa_I20260 (reconstructed by XMU-China). Sample 1;

4. Double enzymes digestion (*EcoR* I and *Pst* I) with BBa_I20260 (reconstructed by XMU-China). Sample 2;

5. Double enzymes digestion (*EcoR* I and *Pst* I) with BBa_I20260 (reconstructed by XMU-China). Sample 3;

6. Single enzyme digestion (*Pst* I) with BBa_I20260(reconstructed by XMU-China). Sample 3;

7. Double enzymes digestion (*EcoR* I and *Pst* I) with BBa_I20260 (reconstructed by XMU-China). Sample 3;

8. Double enzymes digestion (*EcoR* I and *Pst* I) with BBa_I20260 (2012-Plate2-17F). Sample 1;

9. Double enzymes digestion (*EcoR* I and *Pst* I) with BBa_I20260 (2012-Plate2-17F). Sample 2;

10. Double enzymes digestion (*EcoR* I and *Pst* I) with BBa_I20260 (2012-Plate2-17F). Sample 3;

11. Double enzymes digestion (EcoR I and Pst I) with BBa_I20260 (2012-Plate2-17F). Sample 4;

12. Double enzymes digestion (*EcoR* I and *Pst* I) with BBa_I20260 (2014-Plate4-18A). Sample 1;

13. 1kb Marker.

Enzyme digestion verification of device BBa_I20260.

Results and discussion: It was very abnormal that we got puzzling results with double enzymes digestion by *Xba* I and *Pst* I. However, if we used *EcoR* I and *Pst* I instead, we found that the segments generated by single digestion was about 1000bp longer than double digestion whose backbone length isPSB3k3. We could also get segments slightly shorter than 1000bp which generated by double digestion, and that segments were highlighted by red frames. So we confirmed that device BBa_I20260 was correct. We took our actual measurement with the reconstructed device.

Activation of bacteria

Use pipette to transfer 50 μ L bacterium solution pLac-RBS(1.0)-*CheZ*-TT, pLac-RBS(0.01)-*CheZ*-TT, pLac-RBS(0.3)-*CheZ*-TT, pBAD-RBS(1.0)-*CheZ*-TT, pTet-RBS(1.0)-*CheZ*-TT) respectively into 5 ml LB liquid medium whose antibiotic concentration is 50 μ g/ml. Culture for 12 h. Then transfer 50 μ L bacterium solution into new LB liquid medium whose antibiotic concentration is 50 μ g/ml to culture for 12 h.

Characterization

Then stab 3 μ L bacterium medium into the M63 semisolid medium at the dots. And culture the bacteria in constant temperature and humidity incubator at 37 °C.

Measurement

Measure the radius of *E. coli*. Cm=50 µg/ml, IPTG=0, ARA=0;

T/h	2M(A)	2M(B)	2L	2J
0 h	0.25	0.25	0.25	0.25
7 h	0.40	0.40	0.25	0.25
12 h	0.65	0.62	0.55	0.45

Cm=50 µg/ml, IPTG=0.025 mm, ARA=0;

T/h	2M(A)	2M(B)	6F(1-1)	6F(1-2)	14A
0 h	0.25	0.25	0.25	0.25	0.25
7 h	0.40	0.80	0.70	0.75	0.80
12 h	0.65	0.90	0.90	1.05	1.05

Cm=50 µg/ml, IPTG=0.025 mM, ARA=0.02%

T/h	2M(A)	2M(B)	2L	2J
0 h	0.25	0.25	0.25	0.25
7 h	0.3	0.65	0.25	0.25
12 h	0.55	0.75	0.6	0.45

Activation of bacteria

Use pipette to transfer 50 μ L bacterium solution

pLac-RBS(1.0)-*CheZ*-TT, pLac-RBS(0.01)-*CheZ*-TT, pLac-RBS(0.3)-*CheZ*-TT, pBAD-RBS(1.0)-*CheZ*-TT, pTet-RBS(1.0)-*CheZ*-TT respectively into 5 ml LB liquid medium whose antibiotic concentration is 50 µg/ml. Culture for 12 h. Then transfer 50 µL

bacterium solution into new LB liquid medium whose antibiotic concentration is 50 μ g/ml to culture for 12 h.

Characterization

Then stab 3 μL bacterium medium into the M63 semisolid medium at the dots. And culture the bacteria in constant temperature and humidity incubator at 37 $^\circ\!C$.

Measurement

Measure the radius of *E. coli*. Cm=50 µg/ml, IPTG=0, ARA=0;

T/h	2M(A)	2M(B)	2L	2J
0 h	0.25	0.25	0.25	0.24
11 h15 min	0.5	0.55	0.25	0.24
24 h	0.6	0.65	0.25	0.26
30 h	0.95	1.10	0.26	0.25

Cm=50 µg/ml, IPTG=0.025 mM, ARA=0;

T/h	2M(A)	2M(B)	6F(1-1)	6F(1-2)	14A
0 h	0.25	0.25	0.25	0.25	0.25
11 h15min	0.49	0.88	0.68	0.80	0.83
24 h	1.00	1.70	0.90	1.15	1.20

Cm=50 µg/ml, IPTG=0.025 mm, ARA=0.02%

T/h	2M(A)	2M(B)	2L	2J	
0 h	0.25	0.25	0.25	0.20	
11 h15 min	0.30	0.75	0.30	0.20	
24 h	0.35	0.90	0.30	0.25	
30 h	0.60	1.40	0.30	0.25	

• Activation of bacteria

Use pipette to transfer 50 μL bacterium solution

pLac -RBS (1.0)-CheZ-TT, pLac-RBS(0.01)-CheZ-TT,

pLac-RBS(0.3)-CheZ-TT,pBAD-RBS(1.0)-CheZ-TT,pTet-RBS(1.0)-CheZ-TTrespectively into 5 ml LB liquid medium whose antibiotic concentration is 50 μ g/ml.Culture for 12 h. Then transfer 50 μ L bacterium solution into new LB liquid medium whoseantibiotic concentration is 50 μ g/ml to culture for 12 h.

Characterization

Then stab 3 μ L bacterium medium into the M63 semisolid medium at the dots. And culture the bacteria in constant temperature and humidity incubator at 37 °C.

Measurement

It's found that the Solid medium collapse, so the experiment fail.

Activation of bacteria

Use pipette to transfer 50 µL bacterium solution

pLac-RBS(1.0)-*CheZ*-TT, pLac-RBS(0.01)-*CheZ*-TT, pLac-RBS(0.3)-*CheZ*-TT, pBAD-RBS(1.0)-*CheZ*-TT, pTet-RBS(1.0)-*CheZ*-TT respectively into 5 ml LB liquid medium whose antibiotic concentration is 50 μ g/ml. Culture for 12 h. Then transfer 50 μ L bacteria solution into new LB liquid medium whose antibiotic concentration is 50 μ g/ml to culture for 12 h.

Characterization

Then stab 3 μ L bacterium medium into the M63 semisolid medium at the dots. And culture the bacteria in constant temperature and humidity incubator at 37 °C.

Measurement

Measure the radius of *E. coli*. Cm=50 µg/ml, IPTG=0, ARA=0;

T/h	2M(A)	2M(B)	6F(1)	6F(2)	14A	2J
0 h	0.25	0.25	0.25	0.25	0.25	0.25
12 h	0.65	0.90	1.23	1.23	1.40	0.75
18 h	1.05	1.50	2.00	2.00	2.50	1.75
T/h	2M(A)	2M(B)		2L		2J
0 h	0.20	0.30		0.25		0.23
18 h	0.60	1.10		0.25		0.23
24 h	0.75	1.25		0.25		0.23

Purpose: The verification of the connection systems: BBa_R0083+BBa_B0034+BBa_K629003+BBa_B0015 and BBa_R0082+BBa_B0034+BBa_K629003+BBa_B0015.

Results/discussion: The lengths of the connection systems BBa R0083+BBa B0034+BBa K629003+BBa B0015 and BBa_R0082+BBa_B0034+BBa_K629003+BBa_B0015 are 886 bp and 916 bp, but we couldn't get a band near 886 bp with double digestion and also couldn't get a 2148bp band with single digestion. As for BBa_R0082+BBa_B0034+BBa_K629003+BBa_B0015 connection system, we could get a band near 1000 bp with double digestion and a 3000 bp band with single digestion. So we could confirm that the connection system BBa_R0082+BBa_B0034+BBa_K629003+BBa_B0015 was correct, while the length of BBa_R0083+BBa_B0034+BBa_K629003+BBa_B0015 was not correct.

Cm=50 µg/ml, IPTG=0.025 mM, ARA=0;					
T/h	2M(A)	2M(B)	2J	2L	
0 h	0.25	0.25	0.23	0.25	
11 h15 min	0.575	0.60	0.23	0.25	
24 h	0.75	1.10	0.23	0.25	
30 h	0.85	1.30	0.23	0.25	

Cm=0, IPTG=0, ARA=0

T/h	2M(A)	2M(B)	6F(1)	6F(2)	14A	2L
0 h	0.25	0.25	0.25	0.25	0.25	0.25
12 h	0.40	0.60	1.35	1.50	1.20	0.20
18 h	0.80	1.00	2.15	2.25	2.00	0.20

Cm=0, IPTG=0, ARA=0

• Activation of bacteria

Transfer 50 µL bacterium solution.

pLac-RBS(1.0)-*CheZ*-TT, pLac-RBS(0.01)-*CheZ*-TT, pLac-RBS(0.3)-*CheZ*-TT, into new LB liquid medium whose antibiotic concentration is 50 μg/ml to culture for 12 h.

Characterization

Then stab 3 μ L bacterium medium into the M63 semisolid medium at the dots. And culture the bacteria in constant temperature and humidity incubator at 37 °C.

Measurement

Measure the radius of *E. coli*.

6-Plate1: Cm=50 µg/ml, IPTG=0.025 mM, ARA=0;

T/h	2M(A)	2M(B)	2L	2J
0 h	0.25	0.25	0.25	0.25
12 h	0.6	0.8	0.25	0.25
24 h	1.325	2.4	0.225	0.25

11-Plate2: Cm=50 µg/ml, IPTG=0.025 mM, ARA=0;

T/h	2M(A)	2M(B)	2J	2L
0 h	0.25	0.25	0.23	0.23
12 h	0.60	1.20	0.23	0.23
24 h	1.13	1.80	0.23	0.23
39 h	1.60	2.63	0.23	0.23

4-Plate3: Cm=50 µg/ml, IPTG=0.025 mM, ARA=0;

T/h	2M(A)	2M(B)	2J	2L
0 h	0.25	0.25	0.23	0.25
12 h	0.75	1.10	0.23	0.25
24 h	1.33	2.40	0.23	0.25
39 h	Out of measure	Out of measure	0.23	0.25

	1: 100 bp marker;
1 2 3 4 5 6 7 8	2: rGFP(1) ,with double digestion;
1 2 3 4 3 0 7 8	3: rGFP(2), with double digestion;
a loss fills was and see	4:.Fusion Promoter, with double digestion;
	5: Fusion Promoter, with single digestion;
	6:.Fusion Promoter, with double digestion;
	7: Fusion Promoter, with single digestion;
1000	8:1kbp marker.
	(The rGFP is the GFE in reverse.)
500	
	Purpose: The verification of the products of PCR:
	rGFP, Fusion Promoter.
Figure 19	Results/discussion: The length of rGFP was 875
	bp, and the length of Fusion Promoter was 130 bp.
	From the result, we could confirm that rGFP and
	Fusion Promoter were correct.

• The Experiment Plan:

With the 0.01 mM IPTG, 0.02%Ara or the 0.25 mM IPTG and its corresponding concentration gradients of Ara. We were going to use the concentration gradients of Ara in 1%, 5% and 10%.

• Aim:

We wanted to get the most appropriate concentration of Ara to draw the parabola.

• Characterization:

• Conclusion:

With the 0.01 mM, 0.02% Ara in the medium, when plotting with 0.025 mM IPTG and drawing lines with 1% ARA, if the distance between the plot and the line was 1.5 cm, then the *E. coli* could form the parabola pattern.

Activation of bacteria

Use pipette to transfer 50 μ L bacterium solution (pLac-RBS(1.0)-*CheZ*-TT, pLac-RBS(0.01)-*CheZ*-TT, pLac-RBS(0.3)-*CheZ*-TT) respectively into 5 ml LB liquid medium whose antibiotic concentration is 50 μ g/ml. Culture for 12 h but no bacterium come back to life. Continue culture.

Then transfer 50 μ L bacterium solution into new LB liquid medium whose antibiotic concentration is 50 μ g/ml to culture for 3 h.

Characterization

Then stab 3 μ L bacterium medium into the M63 semisolid medium at the dots. And culture the bacteria in constant temperature and humidity incubator at 37 °C.

Measurement

Measure the radius of *E. coli*. Cm=50 μg/ml, IPTG=0.025 mM, ARA=0;

T/h	14A(1)	14A(2)	6F	
0 h	0.25	0.25	0.25	
12 h	0.40	0.40	0.40	
24 h	0.60	0.65	0.90	
36 h	0.75	0.83	1.18	

Cm=50 µg/ml, IPTG=0, ARA=0;

T/h	2M (1)	2M(2)	6F	6F	14A	
0 h	0.25	0.2	0.25	0.20	0.20	
12 h	0.25	0.2	0.45	0.50	0.40	
24 h	0.33	0.30	1.00	0.90	0.75	
36 h	0.40	0.50	1.25	1.05	0.90	

Cm=50 µg/ml, IPTG=0, ARA=0;

T/h	2M	6F	14A(1)	14A(2)
0 h	0.25	0.25	0.25	0.25
12 h	0.25	0.63	0.70	0.45
24 h	0.30	1.45	1.45	0.93
36 h	0.35	1.55	1.90	1.30

Use pipette to transfer 50 μ L bacterium solution pLac-RBS(1.0)-*CheZ*-TT, pLac-RBS(0.01)-*CheZ*-TT, pLac-RBS(0.3)-*CheZ*-TT respectively into 5 ml LB liquid medium whose antibiotic concentration is 50 μ g/ml. Culture for 12 h.

- Extract the Plasmids: 2014-P2-6F
- Activation of bacteria

Use pipette to transfer 50 µL bacterium solution pLac-RBS(1.0)-*CheZ*-TT, pLac-RBS (0.01)-*CheZ*-TT, pLac-RBS(0.3)-*CheZ*-TT respectively into 5 ml LB liquid medium whose antibiotic concentration is 50 µg/ml. Culture for 3 h.

• Measurement: Measure the radius of *E. coli*.

Cm=50 μg/ml, IPTG=0.025 mM, ARA=0;						
T/h	2M	6F	14A			
0 h	0.25	0.20	0.25			
12 h	0.30	0.20	0.35			
36 h	0.60	0.70	0.70			
48 h	0.70	0.80	0.80			
59 h	1.20	1.50	1.20			
72 h	1.60	1.70	1.60			
83.5 h	1.70	1.80	1.80			

Cm=50 µg/ml, IPTG=0.025 mM, ARA=0;

/m=50 μg/	iiii, ii i C	-0.025 m	101, 111011-	-0,	
T/h	2M	2L-1	2L-1	2J-1	2J-1
0 h	0.25	0.25	0.25	0.25	0.25
12 h	0.40	0.30	0.35	0.30	0.30
36 h	0.60	0.35	0.40	0.65	0.70
48 h	0.75	0.70	0.70	0.85	0.90
59 h	1.10	0.90	1.00	1.30	1.30
72 h	1.50	1.30	1.35	1.70	1.40
83.5 h	1.80	1.55	1.60	2.20	1.70

Cm=50 µg/ml, IPTG=0.025 mM, ARA=0;

	1 00 µg/ 111, 11 1 0	0.020 11101, 111	ui 0,	
-	T/h	2M	6F	14A
	0 h	0.25	0.25	0.30
	12 h	0.55	0.60	0.80
	36 h	0.75	0.90	0.90
	48 h	1.05	1.50	1.50
	59 h	1.25	1.50	1.75
	72 h	1.25	1.50	1.75
	83.5 h	1.70	1.80	1.80

Cm=50 µg/ml, IPTG=0.025 mM, ARA=0;

10			
T/h	2M	6F	14A
0 h	0.25	0.25	0.25
12 h	0.25	0.25	0.3
36 h	0.50	0.70	0.40
48 h	0.80	0.73	0.60
59 h	1.20	1.15	1.00
72 h	1.40	1.30	1.40

Cm=50 µg/ml, IPTG=0.025 mM, ARA=0;

10 ,	,	,		
T/h	2M	2L-1	2L-2	2J
0 h	0.25	0.25	0.25	0.20
12 h	0.35	0.30	0.35	0.21
36 h	0.60	0.40	0.40	0.50
48 h	0.80	0.70	0.70	0.95
59 h	1.00	0.80	1.00	1.00
72 h	1.60	1.30	1.30	1.40
83.5 h	1.90	1.40	1.70	1.75

Purpose: The verification of the connection systems BBa_B0033+BBa_K629003+BBa_B0015, BBa_R0010+BBa_B0034+BBa_K629003+BBa_B0015,

BBa_R0040+BBa_B0034+BBa_I1732100+BBa_B0015+BBa_R0010+BBa_B0034+BBa_K629003+B Ba_B0015 and

BBa_K206000+BBa_B0034+BBa_I732100+BBa_B0015+BBa_R0010+BBa_B0034+BBa_K629003+ BBa_B0015, the length of BBa_B0032.

Results/Discussion: We could see from the image that all the strips were dragged seriously. All the circuits were different but they showed the same length, which meant that they were not all correct.