
A Derivation of the gRNA:anti-gRNA model

In our approach to modeling molecular titration using anti-gRNA, we are interested in finding an equation
that describes the equilibrium state of the system described by the following reactions:

gRNA + anti−gRNA −−⇀↽−− gRNA : anti−gRNA (A.1)

gRNA + Cas9 −−⇀↽−− gRNA : Cas9 (A.2)

gRNA:anti-gRNA serves as the inactive complex sink for the repressors of this system and gRNA:Cas9
is the active repressor complex. We would like to derive an expression for the equilibrium concentration of
gRNA:Cas9. Once we have this expression, we will be able to see how this varies with changing parameters of
the system. Such an expression can be found as the solution to a system of equations of the three relevant mass
balance equations and the equilibrium expressions for the above two reactions. For the sake of readability,
let A = [gRNA], B = [anti-gRNA], C = [Cas9], AB = [gRNA:anti-gRNA], and AC = [gRNA:Cas9]. k1
and k2 are the dissociation constants for (A.1) and (A.2) respectively, and AT , BT , and CT , are parameters
that describe the total concentrations in the system of gRNA, anti-gRNA, and Cas9 respectively. Then the
system of equations is as follows:

AT = A + AB + AC (A.3)

BT = B + AB (A.4)

CT = C + AC (A.5)

k1 =
A ·B
AB

(A.6)

k2 =
A · C
AC

(A.7)

To solve this system, we first write (A.4) as B = BT −AB and substitute that into (A.6):

k1 =
A(BT −AB)

AB

=
A ·BT −A ·AB

AB
k1 ·AB = A ·BT −A ·AB

(k1 + A)AB = A ·BT (A.8)

Next, we write (A.3) as AB = AT −A−AC and substitute into (A.8) to get:

(k1 + A)(AT −A−AC) = A ·BT

k1 ·AT − k1 ·AC − k1 ·A + A ·AT −A ·AC −A2 = A ·BT

−A2 − (k1 + AC + BT −AT )A + K1 ·AT − k1 ·AC = 0 (A.9)

We are left with a system of 3 equations consisting of (A.5), (A.9), (A.7). We can write (A.5) as
C = CT −AC and substitute that into (A.7) to get

k2 =
A · (CT −AC)

AC
k2 ·AC = (A · (CT −AC)

A =
k2 ·AC

CT −AC
(A.10)

We can then substitute (A.10) into (A.9), term by term:
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−A2 = − (k2AC)2

(CT −AC)2
(A.11)

−(k1 + AC + BT −AT )A = − (k1 + AC + BT −AT )(k2AC)

CT −AC

= − (k1 + BT −AT )(k2AC)

CT −AC
− k2AC2

CT −AC
(A.12)

K1AT − k1AC = K1AT − k1AC (A.13)

Now we simplify (A.9) as the sum of (A.11), (A.12), and (A.13), and we have:

− (k2AC)2

(CT −AC)2
− (k1 + BT −AT )(k2AC)

CT −AC
− k2AC2

CT −AC
+ K1AT − k1AC = 0

−k22AC2 − (k1 + BT −AT )(k2AC)(CT −AC)

−k2AC2(CT −AC) + k1AT (CT −AC)2 − k1AC(CT −AC)2 = 0 (A.14)

Expanding and combining like terms yields our desired polynomial in AC:

(k2 − k1)AC3 + (2k1CT + k1AT − k2CT + k2(k1 + BT −AT ) − k22)AC2

+(−k1C
2
T − 2k1ATCT − k2CT (k1 + BT −AT ))AC + k1ATC

2
T = 0 (A.15)

B Derivation of the decoy binding sites model

The modeling of molecular titration using decoy binding sites is very similar to the modeling using anti-
gRNA. Unlike anti-gRNA, the decoy binding sites will serve as a buffer for gRNA:Cas9 as opposed to naked
gRNA, but gRNA:Cas9 remains as the active repressor complex, as seen in the following reactions:

gRNA + Cas9 −−⇀↽−− gRNA : Cas9 (B.1)

gRNA : Cas9 + decoyDNA −−⇀↽−− gRNA : Cas9 : decoyDNA (B.2)

Let A = [gRNA], B=[Cas9], C = [decoyDNA], AB = [gRNA:Cas9], and ABC = [gRNA:Cas9:decoyDNA].
k1 and k2 are the dissociation constants for (B.1) and (B.2) respectively, and AT , BT , and CT are parameters
that describe the total concentrations of gRNA, Cas9, and decoyDNA respectively. The system of equations
that describe this system are the following 3 mass balance equations and 2 equilbrium expressions:

AT = A + AB + ABC (B.3)

BT = B + AB + ABC (B.4)

CT = C + ABC (B.5)

k1 =
A ·B
AB

(B.6)

k2 =
AB · C
ABC

(B.7)

We wish to generate a polynomial in terms of AB so that we can solve for its equilibrium concentation
in terms of the parameters of the system. To do this, we start off by writing (B.5) as ABC = CT − C and
substituting into (B.3) and (B.4).
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AT = A + AB + CT − C (B.8)

BT = B + AB + CT − C (B.9)

Next, we write (B.7) as C =
k2CT

k2 + AB
and substitute it into (B.8) and(B.9), which yields

AT =A + AB + CT − k2CT

k2 + AB

A =AT −AB − CT +
k2CT

k2 + AB
(B.10)

BT =B + AB + CT − k2CT

k2 + AB

B =BT −AB − CT +
k2CT

k2 + AB
(B.11)

We rewrite (B.6) as k1AB = A ·B. We can then condense our system of equations into a single equation
by substituting (B.10)and (B.11) into this expression as follows

k1AB =A ·B

k1AB =

(
AT −AB − CT +

k2CT

k2 + AB

)(
BT −AB − CT +

k2CT

k2 + AB

)
k1AB(AB + k2)2 =[(AT − CT −AB)(AB + k2) + k2CT ][(BT − CT −AB)(AB + k2) + k2CT ]

=[(AT − CT − k2) −AB2 + k2(AT − CT ) + k2CT ][(BT − CT − k2) −AB2

+ k2(BT − CT ) + k2CT ]

=[(AT − CT − k2)AB −AB2 + k2AT ][(BT − CT − k2)AB −AB2 + k2BT ]

=(AT − CT − k2)(BT − CT − k2)AB2 − (AT − CT − k2)AB3

+ k2BT (AT − CT − k2)AB − (BT − CT − k2)AB3 + AB4 − k2BTAB2

+ k2AT (BT − CT − k2)AB − k2ATAB2 + k22ATBT

=AB4 − [(AT − CT − k2) + (BT − CT − k2)]AB3 + [(AT − CT − k2)(BT − CT − k2)

− k2BT − k2AT ]AB2 + [k2BT (AT − CT − k2) + k2AT (BT − CT − k2)]AB + k22ATBT

(B.12)

Expanding the left hand side, we have that:

k1AB(AB + k2)2 =k1AB(AB2 + 2k2AB + k22)

=k1AB3 + 2k1k2AB2 + k1k
2
2AB (B.13)

Lastly, we can equate (B.12) and (B.13)

0 =AB4 − [(AT − CT − k2) + (BT − CT − k2) + k1]AB3 + [(AT − CT − k2)(BT − CT − k2) − k2BT

− k2AT − 2k1k2]AB2 + [k2BT (AT − CT − k2) + k2AT (BT − CT − k2) − k1k
2
2]AB + k22ATBT (B.14)

which can also be written as

AB4 + (2k2 + 2CT −AT −BT − k1)AB3 + [(AT − CT − k2)(BT − CT − k2) − k2(BT + AT + 2k1)]AB2

+k2[BT (AT − CT − k2) + AT (BT − CT − k2) − k1k2]AB + k22ATBT = 0
(B.15)

which is our final polynomial in AB.
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