
EasyBbk Documentation:

data_center Unit Test

Author: Chen YiBai

Version: 1.0.0

Date: 2014 / 10 / 15



Introduction

This is a documentation to perform unit test of the unit “data_center” in the software “Easy
BBK”. The test is used to check the validation of the unit “data_center” by examining the
main functions and the outputs under different inputs in the unit. The examining covers all
of the four main parts of the package and the service if provides.

"Easy BBK" is a trial to provide a standardized, visualized and user friendly access to
bio-brick system by simplify and interassociate the searching, comparing, designing and
uploading of bio-bricks. These four main functions constitute the "Easy BBK" client-side
which is realized by pure java and supported by a remote server through the internet.

“data_center” is the connector between the GUI and the remote server, it connect to the
online database and program in server, as well as downloading, storing and providing the
data to the GUI part of “Easy BBK”. Having access to the source code or .jar file of the
“data_center”, one can use most of the main functions of “Easy BBK” about searching,
comparing and uploading through the API provided.



Test Overview
Here are the functions and their inputs and outputs of the test. The test is aimed at the unit
“data_center”, which has no GUI, thus the test is proceeded under the cmd interface.

Function Input Output
Keyword searching
and detail inquiring

Any string for keyword.
Any string as the part_name of a
biobrick.

The search method always return a list
contains 0~n biobrick information wrapped
into a class named BbkOutline in a list, the
list is associated with the keyword input.
The detail inquiring, however, returns a null
if the input string in not a valid part_name
in the database by SJTU-software. When
the part_name is correct, the function will
return the detail of a biobrick wrapped in a
class named BbkDetail.

Search result filter
and sort

Filtering accepts the constant string
defined in class SearchResultList.
Sorting requires no input. The sorting
condition is determined in the name
of the sorting functions.

Filtering should return a new list contains
the biobrick that fits the filter condition of
one of them if there are multiple filter
condition.
Sorting take place in situ, it has no return
and change the list.

Blasting search The sequence specified in the stdin
or contains in a file. Another
parameter to hint the function
whether the first input is a sequence
of a file path.

The search result list same as keyword
searching, except that the blasting field in
BbkOutline is filled for distinguishing and
used in sorting.

Searching history
managing and
inquiring

Using API provided by “data_center”
to inquire searching history.

The previous list or following list in the
history. After a new searching, the item
after the current should be dismissed.

Assign biobrick detail
to compare slot

Any string as the part_name of a
biobrick.

Return null if the part_name specified is
not in the database, otherwise, returns the
detail of the biobrick.

Sketch project
operations: new
project, close project

Newing a project needs no input,
closing a project can specify a
project name of pass null to close
current project.

When newing a project, a project name will
be auto generated, the name should not be
the same as any of the current opened
project.
When closing the project, the current
project should not change if not closing the
current project, otherwise point to the first
project as the current project.

Sketch project read
and write XML file

The file path to save or load. For saving, generate or update the XML
file that contains all the component in the



project.
And for loading, reappear the contains of
the project into the class named
SketchProject.

Sketch operation
history list

Not specified operations into the list,
then ctrlZ and ctrlY the list

After ctrlZ and ctrlY, the history will return
the corresponding items, after a new
operation, the list will be at the end.

Upload and reappear
the uploaded biobrick

Upload pass the attributes packed in
class BbkUpload, reappear uses the
part_name and the part_id to find the
uploaded biobrick.

After uploading a biobrick, a string
represents the odd num will be returned.
When reappearing the biobrick, if the
biobrick is found, a BbkUpload instance
will be returned, or null will be returned if
the biobrick specified is not found.

Uploading
part_name and
sequence token
validation check

Any string as the part_name.
Any string as the sequence token.

Returns true if the part_name is not
occupied, false if not.
Returns true if the input sequence token is
only consist of “a”, “t”, “c”, or “g”. False if
some other character exists.

Uploading subpart
and subscar
validation check

Any string as the part_name of
subpart and the scar_name of the
subscar.

Returns the corresponding subpart and
subscar if found, or null if not.



Test detail

Keyword searching and detail inquiring

Testing code:

SearchResultList list = dataCenter.searchCenter.search("GFP");
list.display();
System.out.println("List size: " + list.size());
for (int i = 0; i < list.size(); i += 10)
{ BbkDetail detail =

dataCenter.searchCenter.getDetail(list.get(i).name);
detail.display();

}

We used the common keyword “GFP” to perform the search. After that, get the detail in
every 10 outlines.

Expected output:
A filled list with a size of positive number. When getting detail, all details can be

found(no nulls).

Output:
The output list size is 2149 > 0, and the details are filled.

Search result filter and sort

Testing code:

BbkOutline bbkOutline =
DatabaseConnector.getOutlineByName("BBa_B0034");

bbkOutline.displayFilteringConditions();

SearchResultList rawList =
dataCenter.searchCenter.search("BBa_B0034");

System.out.println("\n\nFilter by the conditions that fits BBa_B0034: ");
rawList.filterByDeletedOrNot(false)

.filterByDNAStatus(SearchResultList.Filter.DNAStatus.AVAILABLE)

.filterByEnterYear(new int[]{2003, 2013})

.filterByRelaseStatus(SearchResultList.Filter.ReleaseStatus.RELEA
SED).displayFilteringConditions();



System.out.println("\n\nSort by enter date: ");
rawList.sortByEnterDate(true); rawList.displaySortingConditions();
System.out.println("\n\nSort by google items: ");
rawList.sortByGoogleQuoteNum(true);
rawList.displaySortingConditions();
System.out.println("\n\nSort by star num: ");
rawList.sortByAverageStars(true); rawList.displaySortingConditions();
System.out.println("\n\nSort by confirm: ");
rawList.sortByConfrimedTimes(true);
rawList.displaySortingConditions();
System.out.println("\n\nSort by total score: ");
rawList.sortByTotalScore(true); rawList.displaySortingConditions();

We use all the filter conditions that fits the biobrick previously get, and all the sort
conditions to test these functions.

Expected output:
The biobrick get by name “BBa_B0034” survived through the filtering.
After sorting, the lists respectively contain newest, most google items, most star

number, most confirmed times, highest total score in the head of the list.

Output:
“BBa_B0034” survived through the filtering.
After sorting, the lists respectively contain newest, most google items, most star

number, most confirmed times, highest total score in the head of the list.

Blasting search

Testing code:

SearchResultList list;
list = dataCenter.searchCenter.blast

("blastInput", BlastingSearcher.MODE_INPUT_FILE_PATH);
list.sortByBlastResult(true); list.displaySortingConditions();

list = dataCenter.searchCenter.blast
("tccaaagcttacgttaaacacccggctgacatcccggactacctgaaactgtccttccc"

+ "ggaaggtttcaaatgggaacgtgttatgaacttcgaa",
BlastingSearcher.MODE_INPUT_SEQUENCE);

list.sortByBlastResult(true); list.displaySortingConditions();
BlastingSearcher.deleteLocalCacheFiles();



We test both two input methods: file path and sequence.

Expected oupput:
Both two lists have contents sorted by blasting score.

Output:
Output two lists, the item with the lowest eValue is on the top of the list.

Searching history managing and inquiring

Testing code:

System.out.println("The search history can roll back: "
+ dataCenter.searchCenter.canRollBack());

System.out.println("\t\t can go forward: "
+ dataCenter.searchCenter.canGoForward());

dataCenter.searchCenter.search("BBa_B0012");
dataCenter.searchCenter.search("BBa_B0011");
dataCenter.searchCenter.search("GFP BBa_B");
System.out.println("Searched 3 times, current list... ");
dataCenter.searchCenter.getCurrentRawSearchResultList().display();

System.out.println("The search history can roll back: "
+ dataCenter.searchCenter.canRollBack());

System.out.println("\t\t can go forward: "
+ dataCenter.searchCenter.canGoForward());

System.out.println("Roll back... ");
dataCenter.searchCenter.rollBack().display();
System.out.println("Roll back... ");
dataCenter.searchCenter.rollBack().display();
System.out.println("Go forward... ");
dataCenter.searchCenter.goForward().display();

System.out.println("Search again... ");
dataCenter.searchCenter.search("BBa_B0034");
dataCenter.searchCenter.getCurrentRawSearchResultList().display();
System.out.println("The search history can go forward: "

+ dataCenter.searchCenter.canGoForward());

We examined the movability of the cursor of the current page in the first time, after
perform search for 3 times, (then roll back and go forward) and after a new search.



Expected output:
If the current page is in the begin / end of the list, the cursor cannot roll back / go

forward. The previous list will be printed after roll back, and the following list after go
forward. After a new search, the cursor cannot go forward.

Output:
The cursor cannot move at the beginning, the roll back / go forward operation can

return its previous / following item. After new search, the cursor cannot go forward.

Assign biobrick detail to compare slot

Testing code:

dataCenter.compareCenter.assignDetail("BBa_I13545", 2).display();

We used the “BBa_I13545” and the slot No.2 to test.

Expected output:
The detail of the biobrick “BBa_I13545”, including the number of the properties.

Output:
The detail of the biobrick “BBa_I13545”.

Sketch project operations: new project, close project

Testing code:

dataCenter.sketchCenter.newProject();
dataCenter.sketchCenter.newProject();
dataCenter.sketchCenter.newProject();
dataCenter.sketchCenter.newProject();

String[] projectNames =
dataCenter.sketchCenter.getAllProjectNames();

for (String name : projectNames)
System.out.println("Project name: " + name);

System.out.println("Current: " +
dataCenter.sketchCenter.currentProject.name);

System.out.println("Closing project1... ");
dataCenter.sketchCenter.closeProject(projectNames[0]);



System.out.println("Current: " +
dataCenter.sketchCenter.currentProject.name);

System.out.println("Closing current... ");
dataCenter.sketchCenter.closeProject(null);
System.out.println("Current: " +

dataCenter.sketchCenter.currentProject.name);
System.out.println("Closing current... ");
dataCenter.sketchCenter.closeProject(null);
System.out.println("Current: " +

dataCenter.sketchCenter.currentProject.name);
dataCenter.sketchCenter.closeProject(null);

We created 4 projects and get all the project names, respectively close current project and
non-current project to check the change of current project.

Expected output:
Four different project names printed, After first closing, the current project will not

change, but it will change in the second and third closing.

Output:
Project names: “SketchProject1” ~ “SketchProject4”, After first closing, the current

project does not change, but it changes in the second and third closing.

Sketch project read and write XML file

Testing code:

ArrayList<Point> curve = new ArrayList<Point>();
curve.add(new Point(11, 11)); curve.add(new Point(22, 22));
curve.add(new Point(33, 33)); curve.add(new Point(44, 44));
ArrayList<Integer> backBoneChildren = new ArrayList<Integer>();
backBoneChildren.add(1); backBoneChildren.add(6);

SketchProject project = dataCenter.sketchCenter.newProject();
System.out.println("Auto generated project name: " + project.name);

project.addComponent(new Label(0, "", new Rectangle(5, 5, 10, 10),
new Font("Times Roman", 10, 3), new Color(0, 0, 0)));

project.addComponent(new BioBrick
(1, null, BbkType.Sketch.BioBrick.PROMOTER, new Rectangle(10, 10,
10, 10), null));

project.addComponent(new BioBrick
(6, null, BbkType.Sketch.BioBrick.PROMOTER, new Rectangle(10, 50,



10, 10), null));
project.addComponent(new Protein(2, BbkType.Sketch.Protein.FACTOR,

new Rectangle(20, 20, 5, 5), Color.BLUE));
project.addComponent(new BackBone(3, new Rectangle(50, 50, 50, 5),

backBoneChildren));
project.addComponent(new Relation(4, BbkType.Sketch.Relation.SUPPRESS,

new Rectangle(50, 50, 50, 5), curve, new Color(50, 50, 50), 10));
project.addComponent(new BioVector

(5, BbkType.Sketch.BioVector.BACTERIA, new Rectangle(300, 300,
100, 100)));

project.saveIntoFile("testXML.xml");
project.loadFromFile("testXML.xml");

project.displayComponents();

We test all the components, add them into the project, save into the XML file and then
reappear the list.

Expected output:
File “testXML.xml” generated in the current working directory, the list printed is the

same as the components specified.

Ouptut:
File “testXML.xml” generated in the position, the list printed is the same as the

components specified.

Sketch history list inputting and querying
Test code:

SketchProject project = dataCenter.sketchCenter.newProject();
System.out.println("Auto generated project name: " + project.name);

project.addComponent(new Label(0, "",
new Rectangle(5, 5, 10, 10), new Font("Times Roman", 10, 3),
new Color(0, 0, 0)));

project.addComponent(new BioBrick
(1, null, BbkType.Sketch.BioBrick.PROMOTER,
new Rectangle(10, 10, 10, 10), null));

project.addComponent(new Protein(2, BbkType.Sketch.Protein.FACTOR,
new Rectangle(20, 20, 5, 5), Color.BLUE));

project.modifyComponent(0, SketchOperation.TYPE_STRING, "text");



project.ctrlZ();
project.ctrlZ();
project.ctrlZ();
System.out.println("CtrlZ for 3 times, the history list: ");
project.displayOperationHistory();

project.ctrlY();
project.ctrlY();
project.ctrlY();
System.out.println("CtrlY for 3 times, the history list: ");
project.displayOperationHistory();

We perform 4 sketch operations, including adding and modifying, after 3 ctrlZ(), check the
history list, after then, 3 ctrlY(), check the history list.

Expected output:
After 3 ctrlZ(), the history list will only contain the first added operation, the future list

will contain the 3 operations. After 3 ctrlY(), the list will be the same as no history operation
performed.

Output:
After 3 ctrlZ(), the history list contains the ID = 0 operation, the future list contains

operations with ID = 0, 2, 1. After 3 ctrlY(), the history list contains ID = 0, 1, 2, 0
operations, while the future list is empty.

Upload biobrick into database by SJTU-software and reappear

Test code:

BbkUpload bbkUpload = new BbkUpload();
bbkUpload.setName("K1479001");
bbkUpload.setID();
dataCenter.uploadCenter.uploadAndGetOddNum(bbkUpload);
DatabaseConnector.displayTable(DBConsts.Table.MAIN_UPLOAD, 2);
dataCenter.uploadCenter.getBbkUploadByNameAndOddNum

("BBa_K1479001_EasyBbk", "201410115566901").display();

We manually newed a BbkUpload instance for the test, fill the part_name, upload and
download it from the database.

Expected output:
Print a biobrick which has a name of “BBa_K1479001_EasyBbk” and an ID of

“201410115566901”.



Output:
Print a biobrick which has a name of “BBa_K1479001_EasyBbk” and an ID of

“201410115566901”. Other attributes are null.

Uploading part_name and sequence token validation check

Test code:

System.out.println("Name validation(K1479001): " +
dataCenter.uploadCenter.isBbkNameNotOccupied("K1479001"));

System.out.println("Name validation(K1479010): " +
dataCenter.uploadCenter.isBbkNameNotOccupied("K1479010"));

System.out.println("Sequence validation(atctgctagctgafacgt): " +
dataCenter.uploadCenter.isSequanceValid("atctgctagctgafacgt"));

System.out.println("Sequence validation(atctgctagctgacacgt): " +
dataCenter.uploadCenter.isSequanceValid("atctgctagctgacacgt"));

We use both validate and invalidate subpart and subscar input to test validation check.

Expected output:
false, true, false, true.

Output:
false, true, false, true.

Uploading subpart and subscar validation check

Test code:

System.out.println("Subpart validation(BBa_I13545): " +
(dataCenter.uploadCenter.getSubpartForSequenceToken("BBa_I13545")
!= null));

System.out.println("Subpart validation(BBa_K1479010): " +
(dataCenter.uploadCenter.getSubpartForSequenceToken("BBa_K1479010
") != null));

System.out.println("Subpart validation(RFC[10]): " +
(dataCenter.uploadCenter.getSubscarForSequenceToken("RFC[10]") !=
null));

System.out.println("Subpart validation(RFC[1000]): " +
(dataCenter.uploadCenter.getSubscarForSequenceToken("RFC[1000]")
!= null));



Expected output:
true, false, true, false.

Output:
true, false, true, false.

Evaluation

The unit test has proved that the backstage unit “data_center” can fulfill all the main
service it should provide to the GUI and can get connect to the online server by the
SJTU-software well. Some bugs did appear in the process of unit test, which had been
debugged after some effort. The “data_center” appears to have no obvious bug for now.


	Introduction
	Thisisadocumentationtoperformunittestofth
	"EasyBBK"isatrialtoprovideastandardized,v
	“data_center”istheconnectorbetweentheGUIand

