Appendix 1 - PQS

Gillian Forsyth, Aleksandra Plochocka, Robyn Shuttleworth

1 Introduction

In order to help analyse, construct and optimise the biochemical pathways in the Lung Ranger, we used a variety of mathematical tools to create algorithms and simulations. The derivation of the PQS model can be found in this appendix.

2 Chemical Reactions

$$
\begin{aligned}
& \text { PQS }_{\text {external }} \xrightarrow{k} \mathrm{PQS}_{\text {internal }} \\
& 2 \mathrm{PQS}_{\text {internal }}+\mathrm{PQSR}_{2} \underset{k 2}{\stackrel{k 1}{\rightleftharpoons}} \mathrm{PQSR}_{2} \cdot \mathrm{PQS}_{2} \\
& \mathrm{PQSR}_{2} \cdot \mathrm{PQS}_{2}+\mathrm{PpqsA}_{\text {free }} \stackrel{k 3}{\stackrel{k 3}{\rightleftharpoons}} \mathrm{PQSR}_{2} \cdot \mathrm{PQS}_{2} \cdot \mathrm{PpqsA} \\
& \xrightarrow{P Q S R 2 . P Q S 2 . P p q s A} \text { mCherry } \\
& \mathrm{PQS}_{\text {internal }} \xrightarrow{d} \varnothing
\end{aligned}
$$

3 Differential Equations

The first step in the analysis of the system is to find a series of equations describing the kinetics. These equations are written in the form of differential equations to show the change in reactant concentrations over time. External PQS, S_{e}, moves into the cell at rate k forming internal PQS, S_{i} which degrades at rate d. Two S_{i} bind to the receptor at rate k_{1} and dissociate at rate k_{2}.

$$
\begin{equation*}
\frac{d S_{i}}{d t}=k S_{e}-2 k_{1} S_{i}^{2} R+2 k_{2} C-d S_{i} \tag{1}
\end{equation*}
$$

The signal-receptor tetramer, C is formed and degraded as S_{i} binds and dissociates from the receptors. C binds to the promoter, P_{F}, at rate k_{3} and dissociates at rate k_{4}.

$$
\begin{equation*}
\frac{d C}{d t}=k_{1} S_{i}^{2} R-k_{2} C-k_{3} C P_{F}+k_{4} A \tag{2}
\end{equation*}
$$

Therefore the tetramer-promoter complex, A, is produced when C and P_{F} bind and degrades as they dissociate.

$$
\begin{equation*}
\frac{d A}{d t}=k_{3} C P_{F}-k_{4} A \tag{3}
\end{equation*}
$$

Finally the synthesis of mCherry, M, occurs at a rate proportional to A.

$$
\begin{equation*}
\frac{d M}{d t}=K A \tag{4}
\end{equation*}
$$

4 Analysis

The pqsA promoters are in either free-from, P_{F}, or bound-form, A, and so the total number of promoters is equal to:

$$
\begin{equation*}
P_{o}=P_{F}+A \tag{5}
\end{equation*}
$$

Applying (5) to (2) and (3)

$$
\begin{align*}
\frac{d C}{d t} & =k_{1} S_{i}^{2} R-k_{2} C+k_{3} C\left(P_{o}-A\right)-k_{4} A \tag{6}\\
\frac{d A}{d t} & =k_{4} A-k_{3} C\left(P_{o}-A\right) \tag{7}
\end{align*}
$$

Since some reactions are faster compared to others the system can be simplified. It is known that the binding and dissociation of a complex occurs quicker than the synthesis of a protein and and so we can approximation the rate of change of the complex to be zero. This is also known as the quasi-steady state approximation. Setting (7) to be zero and rearranging gives:

$$
A=\frac{k_{3} C P_{o}}{k_{4}+k_{3} C}
$$

This value for A can substituted into the other equations. C can also be assumed to be in quasisteady state and after setting (6) to be zero and rearranging gives:

$$
C=\frac{k_{1}}{k_{2}} R S_{i}^{2}
$$

Our system then becomes:

$$
\begin{align*}
& \frac{d S_{i}}{d t}=k S_{e}-\underbrace{2 k_{1} S_{i}^{2} R+2 k_{2} C}_{=0}-d S_{i} \tag{8}\\
& \frac{d C}{d t}=\underbrace{k_{1} S_{i}^{2} R-k_{2} C}_{=0}+\underbrace{k_{3} C\left(P_{o}-A\right)-k_{4} A}_{=0} \\
& \frac{d A}{d t}=\underbrace{k_{4} A-k_{3} C\left(P_{o}-A\right)}_{=0} \\
& \frac{d M}{d t}=K A
\end{align*}
$$

Since (8) is a linear differential equation of the form $x^{\prime}+p x=q$, it can be solved using the integrating factor method where the integrating factor is $e^{d t}$

$$
\begin{aligned}
\frac{d}{d t}\left(S_{i} e^{d t}\right) & =e^{d t} k S_{e} \\
S_{i} e^{d t} & =\frac{k}{d} S_{e} e^{d t}+\text { const } \\
& =\frac{k}{d} S_{e} e^{d t}-\frac{k}{d} S_{e} \\
& =\frac{k}{d} S_{e}\left(e^{d t}-1\right) \\
S_{i} & =\frac{k}{d} S_{e} e^{-d t}\left(e^{d t}-1\right) \\
& =\frac{k}{d} S_{e}\left(1-e^{-d t}\right)
\end{aligned}
$$

but $e^{-d t} \rightarrow 0$

$$
S_{i} \approx \frac{k}{d} S_{e}
$$

Now then

$$
\begin{align*}
& \frac{d m \text { Cherry }}{d t}=K A \\
& =K \frac{k_{3} C P_{o}}{k_{4}+k_{3} C} \\
& =K \frac{k_{3} \frac{k_{1}}{k_{2}} R S_{i}{ }^{2} P_{o}}{k_{4}+k_{3} \frac{k_{1}}{k_{2}} R S_{i}{ }^{2}} \\
& =K \frac{k_{3} \frac{k_{1}}{k_{2}} R\left(\frac{k}{d} S_{e}\right)^{2} P_{o}}{k_{4}+k_{3} \frac{k_{1}}{k_{2}} R\left(\frac{k}{d} S_{e}\right)^{2}} \\
& \frac{d[m \text { Cherry }]}{d t}=\frac{K P_{o}\left[S_{e}\right]^{2}}{\frac{k_{2} k_{d} d d^{2}}{k_{1} k k_{3} k^{2} R}+\left[S_{e}\right]^{2}} \tag{9}
\end{align*}
$$

Equation (9) portrays that the expression of mCherry is dependent on the concentration of PQS present in the sputum sample.

5 Default Parameters

We used the following parameters:
The values for k_{3} and k_{4} were derived from an $E C_{50}$ value [1]. This $E C_{50}$ value can be used to approximate K_{D} [4]and then:

Default Parameters	Value	Reference
PQS and PQSR association rate, $\left(k_{1}\right)\left[M^{-1} s^{-1}\right]$	0.0793	$[5]$
PQS and PQSR dissociation rate, $\left(k_{2}\right)\left[s^{-1}\right]$	0.016	$[5]$
$\mathrm{PQS}_{2} \mathrm{PQSR}$ and Ppqs A association rate, $\left(k_{3}\right)\left[M^{-1} s^{-1}\right]$	0.016	$[1]$
$\mathrm{PQS}_{2} \mathrm{PQSR}$ and Ppqs A dissociation rate, $\left(k_{4}\right)\left[s^{-1}\right]$	0.117	$[1]$
Rate of PQS movement into the cell, $(k)\left[s^{-1}\right]$	$1.6 * 10^{-4}$	Set here
Rate of PQS movement out of the cell, $(d)\left[s^{-1}\right]$	$1.6 * 10^{-4}$	Set here
Maximal rate of mCherry expression per promoter $(K)\left[s^{-1}\right]$	0.016	Set here
Concentration of promoters in the cell $(P)[\mu M]$	0.083	$[2,3]$
Concentration of receptors in the cell $(R)[\mu M]$	4.98	$[2,3]$

$$
\begin{aligned}
K_{D} & =\frac{k_{\text {dissociation }}}{k_{\text {association }}} \\
K_{D_{2}} & =\frac{k_{4}}{k_{3}}
\end{aligned}
$$

It is worth noting that $K_{D_{1}}$ is 10 -fold lower than $K_{D_{2}}$. This implies that PQSR has a higher binding affinity for PQS than the promoter. (The lower the K_{D} the higher the binding affinity)

References

[1] Ilangovan, A. et al. Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR), JPLoS Pathog, 9, e1003508 (2013).
[2] Leake, M.C. et al. Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging, Proc Natl Acad Sci USA, 40, 15376-15381 (2008).
[3] Twigg, A. et al. Trans-complementable copy-number mutants of plasmid ColE1, Nature, 283, 216-218 (1980).
[4] Wu, G Assay Development: Fundamentals and Practices, Wiley-Blackwell, 2010.
[5] Zender, M. et al. Discovery and biophysical characterization of 2-Amino-oxadiazoles as novel antagonists of PqsR, an important regulator of Pseudomonas aeruginosa virulence, J Med Chem, 56, 6761-6774 (2013).

