Team:Vanderbilt/Project

From 2014.igem.org

(Difference between revisions)
(Project Description)
Line 121: Line 121:
<!--Project content  -->
<!--Project content  -->
-
<tr><td > <h3> Project Description </h3></td>
+
<tr><td > <h3> Our Idea: </h3></td>
<td ></td >
<td ></td >
-
<td > <h3> Content</h3></td>
+
<td > <h3> Our Approach: </h3></td>
</tr>
</tr>
<tr>
<tr>
<td width="45%"  valign="top">  
<td width="45%"  valign="top">  
-
<p>Tell us more about your project. Give us background. Use this as the abstract of your project. Be descriptive but concise (1-2 paragraphs) </p>
+
<p>Long before the advent of modern science, it was recognized that certain plants are capable of producing compounds of immense value. From a single class of molecule, the terpenoids, come properties including agents with therapeutic qualities against maladies ranging from cancer to infection, antimicrobials, natural pesticides, rich flavorants, and fragrant scents<sup>1</sup>. However, the utilization of these remarkable compounds has been severely hindered by their rarity in nature: many are found in only a small number of species and produced at levels measured in parts per million<sup>2</sup>. Synthetic biology offers an opportunity to resolve this problem, by applying metabolic engineering in order to create cellular factories. Our project seeks to use the ideas of synthetic biology to develop a commercially viable strategy for the efficient production of a wide range of terpenoids. </p>
<br>
<br>
<h3>References </h3>
<h3>References </h3>
<p>
<p>
-
iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you though about your project and what works inspired you. </p>  
+
1. Aharoni A, Jongsma MA, Bouwmeester HJ. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Science 2005;10(12):594-602. </br>
 +
2. Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Molecular Pharmaceutics 2008;5(2):167-90. </br>
 +
3. Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovich H, Vainstein A. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic Engineering 2011;13(5):474-81.
 +
</p>  
</td>
</td>
<td></td>
<td></td>
<td  width="45%"  valign="top">
<td  width="45%"  valign="top">
-
<p> You can use these subtopics to further explain your project</p>
+
<p> We believe that common brewer's yeast, or <i> Saccharomyces cerevisiae </i>, is an excellent platform for engineering terpenoid biosynthetic pathways. The mevalonic acid pathway endogenous to yeast produces the key isoprenoid intermediates that are the precursors to virtually all terpenoid biosynthesis<sup>3</sup>. Genes encoding plant synthases can then be recombinantly expressed in yeast cells, which then take that isoprenoid substrate and convert it through one or more steps into the final terpenoid product. A specially designed biobrick shuttle vector developed by our team should make the process convenient and reliable, and a carefully-refined protocol is expected to further improve product yield. Combined, our approach promises to be an effective manufacturing platform for these precious (and sweet-smelling) compounds.  
-
 
+
-
<ol>
+
-
<li>Overall project summary</li>
+
-
<li>Project Details</li>
+
-
<li>Materials and Methods</li>
+
-
<li>The Experiments</li>
+
-
<li>Results</li>
+
-
<li>Data analysis</li>
+
-
<li>Conclusions</li>
+
-
</ol>
+
-
 
+
-
<p>
+
-
It's important for teams to describe all the creativity that goes into an iGEM project, along with all the great ideas your team will come up with over the course of your work.  
+
</p>
</p>
-
<p>
+
<figure>
-
It's also important to clearly describe your achievements so that judges will know what you tried to do and where you succeeded. Please write your project page such that what you achieved is easy to distinguish from what you attempted.  
+
<img src="https://static.igem.org/mediawiki/2014/2/27/S._officinalis.JPG" alt="Sage plant, <i>Salvia officinalis</i>, growing in the Vanderbilt greenhouse"  height="200" width="300" style="padding-bottom:0.5em;">
-
</p>
+
<figcaption>Sage plant, <i> Salvia officinalis </i>, growing in the Vanderbilt greenhouse</figcaption>
-
 
+
</figure>
-
</td>
+
</tr>
</tr>

Revision as of 02:31, 13 August 2014




This page is under construction

Click here to edit this page!

Home Team Official Team Profile Project Parts Modeling Notebook Safety Attributions

Our Idea:

Our Approach:

Long before the advent of modern science, it was recognized that certain plants are capable of producing compounds of immense value. From a single class of molecule, the terpenoids, come properties including agents with therapeutic qualities against maladies ranging from cancer to infection, antimicrobials, natural pesticides, rich flavorants, and fragrant scents1. However, the utilization of these remarkable compounds has been severely hindered by their rarity in nature: many are found in only a small number of species and produced at levels measured in parts per million2. Synthetic biology offers an opportunity to resolve this problem, by applying metabolic engineering in order to create cellular factories. Our project seeks to use the ideas of synthetic biology to develop a commercially viable strategy for the efficient production of a wide range of terpenoids.


References

1. Aharoni A, Jongsma MA, Bouwmeester HJ. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Science 2005;10(12):594-602.
2. Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Molecular Pharmaceutics 2008;5(2):167-90.
3. Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovich H, Vainstein A. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic Engineering 2011;13(5):474-81.

We believe that common brewer's yeast, or Saccharomyces cerevisiae , is an excellent platform for engineering terpenoid biosynthetic pathways. The mevalonic acid pathway endogenous to yeast produces the key isoprenoid intermediates that are the precursors to virtually all terpenoid biosynthesis3. Genes encoding plant synthases can then be recombinantly expressed in yeast cells, which then take that isoprenoid substrate and convert it through one or more steps into the final terpenoid product. A specially designed biobrick shuttle vector developed by our team should make the process convenient and reliable, and a carefully-refined protocol is expected to further improve product yield. Combined, our approach promises to be an effective manufacturing platform for these precious (and sweet-smelling) compounds.

Sage plant, <i>Salvia officinalis</i>, growing in the Vanderbilt greenhouse
Sage plant, Salvia officinalis , growing in the Vanderbilt greenhouse