Team:UCL/experiments

From 2014.igem.org

(Difference between revisions)
Line 36: Line 36:
<br/>
<br/>
<p>Our literature search identified a number of bacterial species that have been proven to degrade azo dye compounds including <i>B. subtilis</i> and <i>P. aeruginosa</i>.  We were able to obtain a <i>B. subtilis</i> strain for use in our project from ?.  We extracted the genomic DNA from this strain using a Promega Wizard Genomic DNA extraction kit so that we could subsequently amplify the azo-reducatase gene (AzoR1) and create our first azo-reductase BioBrick.  After completing the genomic DNA extracton we ran a gel to show that we had successfully extracted the <i>B. subtilis</i> genomic DNA.
<p>Our literature search identified a number of bacterial species that have been proven to degrade azo dye compounds including <i>B. subtilis</i> and <i>P. aeruginosa</i>.  We were able to obtain a <i>B. subtilis</i> strain for use in our project from ?.  We extracted the genomic DNA from this strain using a Promega Wizard Genomic DNA extraction kit so that we could subsequently amplify the azo-reducatase gene (AzoR1) and create our first azo-reductase BioBrick.  After completing the genomic DNA extracton we ran a gel to show that we had successfully extracted the <i>B. subtilis</i> genomic DNA.
-
&nbsp;<button class="btn btn-primary" data-toggle="modal" data-target=".bs-example-modal-lg">View</button></p>
+
&nbsp;<button class="btn btn-small" data-toggle="modal" data-target=".bs-example-modal-lg">View</button></p>

Revision as of 16:52, 6 September 2014

Goodbye Azo Dye : iGEM 2014 - University College London

 

About our project

Contact Us

University College London - Gower Street - London - WC1E 6BT - Biochemical Engineering Department
phone: +44 (0)20 7679 2000
email: ucligem2014@gmail.com

Follow Us

Tweets

back to top