Team:UCL/Science/Bioprocessing

From 2014.igem.org

(Difference between revisions)
Line 7: Line 7:
</div>
</div>
<div class="textArena">
<div class="textArena">
-
<div class="textTitle"></div>
 
<!-- ==========================CONTENT========================== -->
<!-- ==========================CONTENT========================== -->

Revision as of 16:07, 16 September 2014

Goodbye Azodye UCL iGEM 2014

Bioprocess Engineering

Introduction

In the textile industry today, the global production of dyestuff amounts to over millions of tonnes per year. Azodyes represent two thirds of this value, a majority of which find their way to wastewater effluent streams. Characterised by the presence of one or more azo group (more on chemistry), this type of organic colorant is also found in cosmetics, pharmaceuticals and food industries. While the desirable properties of azodyes i.e. chemical stability, high molar extinction coefficient and fastness make them a dye-class of choice, their widespread use in countries such as India and China make them a dye to die for—literally. This is because, in parallel to being aesthetically intrusive to ecosystems, azodye breakdown products have been found to be mutagenic and carcinogenic. With such a high worldwide consumption, the benefits in developing and integrating a sustainable strategy for dealing with such effluent streams is clear. It is worth to note that the ‘azodye problem’ is exacerbated by the high costs, both financial (economic) and environmental, of current physiochemical and biological methods of treatment (more on current treatment). This year, BioPro@UCLiGEM is looking into the processing options, novel and old, that are relevant to tackling the problem of azodye discharges. In order to assess the feasibility and determine key engineering parameters for each option, the most important dyestuff sector will be used as a case study: textiles and dyeing industry.

What is bioprocessing engineering?

Bioprocess engineering is a conglomerate of fields, applied in the context of biological systems, usually to create a product of commercial interest. Application of bioprocessing opens the gateway to eco-friendly alternatives to wastewater treatment, such as dealing with water bodies contaminated with industrial effluents.
A typical bioprocess involves the fermentation of a stock culture (e.g. E. coli) at a small scale which is subsequently scaled up to suitable production capacities. The products from the fermentative stages are then separated using a variety of techniques designed to exploit the orthogonal properties of desired products.
Stages of large scale fermentation of E. coli:


Check out our Manufacturing page where we outline how we are going to use Bioprocess Engineering to industrialize our remediation process.




The design of a process

with azodyes

Expand

The contamination of natural habitats surrounding textile factories by coloured (azodye-rich) effluents is a real problem (more). This is because the enzymatic breakdown products of azodyes i.e. aromatic amines, are carcinogenic when ingested. These can not only build up within local ecosystems but can also be a hazard to humans through bio-accumulation in the food chain. With a large section of dyehouse effluents consisting of dyes that have half-lives spanning over decades, the latter remain in the environment for long periods of time.

Understanding the issues

with current methods

Expand

With regards to current technologies in the textile industry, exorbitant volumes of water are used for processing (around 90%), the rest being used for heat exchange purposes. Unfortunately most of the water used for processing is discharged as waste, resulting in highly diluted azodye effluent streams. Secondly, the recalcitrant nature of azodyes hikes the inherent costs of large-scale physical separation systems. As a result, industrial processes used to deal with such soluble hazardous wastes would not be a feasible option to deal with azodye effluents.

Expand

By using whole cell biocatalysis as the workhorse for detoxification, this process will yield lucrative byproducts such as quinones, that can then be separated from the process stream and sold off.

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around.Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around.Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around.

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Other Problems

Expand

Random Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around

Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking aroundRandom Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking aroundRandom Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking aroundRandom Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking aroundRandom Stuff will go here based on what you want to say. This text is just filler text so all I can do is chuck it in here for mucking around.

Contact Us

University College London
Gower Street - London
WC1E 6BT
Biochemical Engineering Department
Phone: +44 (0)20 7679 2000
Email: ucligem2014@gmail.com

Follow Us