Team:Toulouse/Project/Fungicides

From 2014.igem.org

(Difference between revisions)
 
(5 intermediate revisions not shown)
Line 98: Line 98:
the advantage to minimize the resistance phenomenon.</p> <br>
the advantage to minimize the resistance phenomenon.</p> <br>
-
  <p class="textesimple">Originally from plants, these peptides have different targets thus increasing the lethality on <i>C. platani</i>.</p>
+
  <p class="textesimple">Originally from plants, these peptides have different targets thus increasing the lethality on <i>Ceratocystis platani</i>.</p>
<br></br>  
<br></br>  
<ul>
<ul>
Line 131: Line 131:
<p class="texte">We added D4E1 and GAFP-1 to the Registry of Standard Biological Parts  
<p class="texte">We added D4E1 and GAFP-1 to the Registry of Standard Biological Parts  
(See <a href="https://2014.igem.org/Team:Toulouse/Result/parts/Submitted_parts"_blank">Submitted parts</a>).
(See <a href="https://2014.igem.org/Team:Toulouse/Result/parts/Submitted_parts"_blank">Submitted parts</a>).
-
  <br> These new BioBricks were designed in order to be expressed and secreted with <i>Bacillus subtilis</i>.  </p>
+
  <br> These new BioBricks were designed in order to be expressed and secreted with <i>B. subtilis</i>.  </p>
<br>
<br>
<p  class="title2">Secretion</p>
<p  class="title2">Secretion</p>
Line 142: Line 142:
<br><p class="legend">Figure 3: Design of GAFP-1 and D4E1</p></center>
<br><p class="legend">Figure 3: Design of GAFP-1 and D4E1</p></center>
<br>
<br>
 +
 +
<center><a href="https://2014.igem.org/Team:Toulouse/Result/experimental-results"> <img src="https://static.igem.org/mediawiki/parts/f/fe/Jump.jpg"> </a></center>
Line 147: Line 149:
<ul>
<ul>
-
<li class="tree"><p class="texte">A. J De Lucca, J.M Bland, C. Grimm, T.J Jacks.<b> Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1 </b>. Canadian Journal of Microbiology. 1998, Vol. 44:514-520. </p></li>
+
<li class="tree"><p class="texte">A. J De Lucca, J.M Bland, C. Grimm, and T.J Jacks.<b> Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1 </b>. Canadian Journal of Microbiology. 1998, Vol. 44:514-520. </p></li>
<li class="tree"><p class="texte">Kanniah Rajasekaran, Kurt D. Stromberg, Jeffrey W. Cary, and Thomas E. Cleveland.<b> Broad-Spectrum Antimicrobial Activity in vitro of the Synthetic Peptide D4E1</b>. J. Agric. Food Chem. 2001, Vol. 49, 2799-2803.</p></li>
<li class="tree"><p class="texte">Kanniah Rajasekaran, Kurt D. Stromberg, Jeffrey W. Cary, and Thomas E. Cleveland.<b> Broad-Spectrum Antimicrobial Activity in vitro of the Synthetic Peptide D4E1</b>. J. Agric. Food Chem. 2001, Vol. 49, 2799-2803.</p></li>
-
<li class="tree"><p class="texte">M. Visser, D. Stephan, J.M. Jaynes and J.T. Burger.<b> A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens</b>. Letters in Applied Microbiology. 2012, Vol. 54, 543–551.</p></li>
+
<li class="tree"><p class="texte">M. Visser, D. Stephan, J.M. Jaynes, and J.T. Burger.<b> A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens</b>. Letters in Applied Microbiology. 2012, Vol. 54, 543–551.</p></li>
-
<li class="tree"><p class="texte">K. D. Cox, D. R. Layne, R. Scorza, G Schnabel. <b>Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco</b>. Planta. 2006, Vol. 224:1373–1383</p></li>
+
<li class="tree"><p class="texte">K. D. Cox, D. R. Layne, R. Scorza,and G Schnabel. <b>Gastrodia anti-fungal protein from the orchid <i>Gastrodia elata</i> confers disease resistance to root pathogens in transgenic tobacco</b>. Planta. 2006, Vol. 224:1373–1383.</p></li>
-
<li class="tree"><p class="texte">Xiaochen Wang, Guy Bauw, Els J.M. Van Damme, Willy J. Peumans, Zhang-Liang Chen, Marc Van Montagu and Willy Dillen. <b>Gastrodianin-like mannose-binding proteins: a novel class of plant proteins with antifungal properties</b>. The Plant Journal. 2001, Vol. 25(6), 651±661</p></li>
+
<li class="tree"><p class="texte">Xiaochen Wang, Guy Bauw, Els J.M. Van Damme, Willy J. Peumans, Zhang-Liang Chen, Marc Van Montagu, and Willy Dillen. <b>Gastrodianin-like mannose-binding proteins: a novel class of plant proteins with antifungal properties</b>. The Plant Journal. 2001, Vol. 25(6), 651±661.</p></li>
-
<li class="tree"><p class="texte">Svetlana B. Nolde, Alexander A. Vassilevski, Eugene A. Rogozhin, Nikolay A. Barinov, Tamara A. Balashova, Olga V. Samsonova, Yuri V. Baranov, Alexey S. Arseniev and Eugene V. Grishin. <b>Disulfide-stabilized Helical Hairpin Structure and Activity of a Novel Antifungal Peptide EcAMP1 from Seeds of Barnyard Grass (Echinochloa crus-galli)</b>. The journal of Biological Chemistry. 2011, Vol. 286, 25145–25153</p></li>
+
<li class="tree"><p class="texte">Svetlana B. Nolde, Alexander A. Vassilevski, Eugene A. Rogozhin, Nikolay A. Barinov, Tamara A. Balashova, Olga V. Samsonova, Yuri V. Baranov, Alexey S. Arseniev and, Eugene V. Grishin. <b>Disulfide-stabilized Helical Hairpin Structure and Activity of a Novel Antifungal Peptide EcAMP1 from Seeds of Barnyard Grass (<i>Echinochloa crus-galli</i>)</b>. The journal of Biological Chemistry. 2011, Vol. 286, 25145–25153.</p></li>
</ul>
</ul>

Latest revision as of 02:58, 18 October 2014