Team:Toulouse/Notebook/Protocols

From 2014.igem.org

(Difference between revisions)
 
(2 intermediate revisions not shown)
Line 213: Line 213:
- Put the tubes 20 minutes in the ice </i>
- Put the tubes 20 minutes in the ice </i>
<br/>
<br/>
-
- Put the tubes 2 minutes at 42°C in the water bath
+
- Put the tubes 2 minutes at 42°C in the water bath to create the thermic shock
<br/>
<br/>
-
- Put the tubes back in ice immediately to create the thermic shock
+
- Put the tubes back in ice immediately  
<br/>
<br/>
- Add 1mL of LB medium
- Add 1mL of LB medium
Line 244: Line 244:
<br>
<br>
-
<br/><I>NB: It is possible to purify the plasmid with an alcaline lysis without any purification column. For 2 mL of culture, 200 µL of buffer 1 is added to resuspend the pellet, 400 µL of buffer 2 to allow the lysis of the cells and the denaturation of the protein and 300 µL of buffer 3 to precipitate the DNA and the proteins. The solution is then centrifuged 10 minutes at 13 000 RPM.
+
<br/><i>NB: It is possible to purify the plasmid with an alcaline lysis without any purification column. For 2 mL of culture, 200 µL of buffer 1 is added to resuspend the pellet, 400 µL of buffer 2 to allow the lysis of the cells and the denaturation of the protein and 300 µL of buffer 3 to precipitate the DNA and the proteins. The solution is then centrifuged 10 minutes at 13 000 RPM.
600 µL of isopropanol is added to the supernatant and the solution is centrifuged again. The pellet is then resuspended in 100 µL of pH 7.4 TE buffer. A part of the contamination by the RNA can avoid by the addition of pH 7.4 TE buffer + 0.2 µL of RNAse. </i>
600 µL of isopropanol is added to the supernatant and the solution is centrifuged again. The pellet is then resuspended in 100 µL of pH 7.4 TE buffer. A part of the contamination by the RNA can avoid by the addition of pH 7.4 TE buffer + 0.2 µL of RNAse. </i>
<br>
<br>
Line 252: Line 252:
</I></p>
</I></p>
-
<p class="title1" id="select4"> Cloning </p>
+
<p class="title1" id="select4">Cloning </p>
<p class="texte">Cloning is the step after taking the competent cells, transforming the BioBricks and miniprep them.
<p class="texte">Cloning is the step after taking the competent cells, transforming the BioBricks and miniprep them.
<br>
<br>
Line 353: Line 353:
<p class="texte">
<p class="texte">
<B> Day 0 </B>
<B> Day 0 </B>
-
<br/>- Streak out the <i>Bacillus</i> strain and plate this on an LB agar plate overnight at 37°C</p>
+
<br/>- Streak out the <i>B. subtilis</i> strain and plate this on an LB agar plate overnight at 37°C</p>
<p class="texte"><B> Day 1 </B>
<p class="texte"><B> Day 1 </B>
-
<br/>- Pick up a nice big colony of <I>B. Subtilis </I> strain and drop it in 2ml of completed 1x MC
+
<br/>- Pick up a nice big colony of <I>B. subtilis </I> strain and drop it in 2ml of completed 1x MC
<br/>
<br/>
- Grow at 37°C for 5 hours
- Grow at 37°C for 5 hours
Line 395: Line 395:
<p class="title1" id="select7">Test of the pSB<sub>BS</sub>4S plasmid integration in <i>Bacillus subtilis</i> genome on the threonine site</p>
<p class="title1" id="select7">Test of the pSB<sub>BS</sub>4S plasmid integration in <i>Bacillus subtilis</i> genome on the threonine site</p>
<p class="texte">
<p class="texte">
-
<br>- Plate the transformed <i>Bacillus</i> strain on a selective medium (LB + spectinomycin) overnight  
+
<br>- Plate the transformed <i>B. subtilis</i> strain on a selective medium (LB + spectinomycin) overnight  
<br>- The obtained clones are then plated on different media:  Medium Competence (Thr+), Medium Competence (Thr-) and LB + Spectinomycin.  
<br>- The obtained clones are then plated on different media:  Medium Competence (Thr+), Medium Competence (Thr-) and LB + Spectinomycin.  
<br>When the plasmid is integrated, the clone can grow on minimum medium with threonine and on LB + Spectinomycin but can not grow on the minimum medium without thronine.
<br>When the plasmid is integrated, the clone can grow on minimum medium with threonine and on LB + Spectinomycin but can not grow on the minimum medium without thronine.
Line 412: Line 412:
<p class="texte">
<p class="texte">
<br>- Put 200 µl of the different chemoattractants in the wells of the ELISA plate and pipet 15 µL of each with the multichannel pipette: galactose which represents our negative control, glucose which represents our positive control and N-acetylglucosamine (NAG). The volume in the tips must be marked.<br>
<br>- Put 200 µl of the different chemoattractants in the wells of the ELISA plate and pipet 15 µL of each with the multichannel pipette: galactose which represents our negative control, glucose which represents our positive control and N-acetylglucosamine (NAG). The volume in the tips must be marked.<br>
-
<br><i>NB: The NAG is the most important test because it is the monosaccharide which composes the chitin on <i>Ceratocystis platani</i> wall.<br>  
+
<br><i>NB: The NAG is the most important test because it is the monosaccharide which composes the chitin on <i>Ceratocystis platani</i> wall.</i><br>
<br>- Put the tips with chemoattractants in 300 µL of the bacterial solution in exponential growth phase in the ELISA plate.
<br>- Put the tips with chemoattractants in 300 µL of the bacterial solution in exponential growth phase in the ELISA plate.
<br>- Let the installation settle for 1 hour at room temperature.
<br>- Let the installation settle for 1 hour at room temperature.
Line 472: Line 472:
</p>
</p>
<p class= "texte">
<p class= "texte">
-
<b> Sap-like Medium (250 mL) (see references)</b> : <br>
+
<b> Sap-like Medium (250 mL) (see references)</b>: <br>
   
   
-
2,5g de tryptone<br>
+
2,5g de tryptone
<br>1,25g de YE
<br>1,25g de YE
Line 498: Line 498:
</p>
</p>
<br>
<br>
 +
<p class="texte">
<b>References</b><br>
<b>References</b><br>
Véronique Amiard, Annette Morvan-Bertrand, Jean-Bernard Cliquet, Jean-Pierre Billard,
Véronique Amiard, Annette Morvan-Bertrand, Jean-Bernard Cliquet, Jean-Pierre Billard,
Claude Huault, Jonas P. Sandström, and Marie-Pascale Prud’homme. <b>Carbohydrate and amino
Claude Huault, Jonas P. Sandström, and Marie-Pascale Prud’homme. <b>Carbohydrate and amino
acid composition in phloem sap of Lolium perenne L. before and after defoliation</b>. Can. J. Bot.
acid composition in phloem sap of Lolium perenne L. before and after defoliation</b>. Can. J. Bot.
-
Vol. 82: 1594–1601, 2004.
+
Vol. 82: 1594–1601, 2004.</p>
  </div>
  </div>

Latest revision as of 03:37, 18 October 2014