Team:StanfordBrownSpelman/Modelling

(Difference between revisions)
 Revision as of 04:26, 17 October 2014 (view source)Eliblock (Talk | contribs)← Older edit Revision as of 06:13, 17 October 2014 (view source)Newer edit → Line 465: Line 465:
- Modeling allows for efficient experimental design by optimizing specific conditions before testing with in vitro methods. Flux Balance Analysis (FBA) is used to optimize the growth medium for the bioengineered gluconacetobacter hansenii to yield bacterial cellulose to be used as biomaterial for a biodegradable drone. FBA is a mathematical method used to examine how metabolites relate to each network and makes predictions for the growth of an organism and product output. It is a direct application of linear programming to biological systems that used the stoichiometric coefficient for each reaction in the system as the set of constraints for the optimization. (add glycolysis stoichiometric picture here) + Modeling allows for efficient experimental design by optimizing specific conditions before testing with in vitro methods. Flux Balance Analysis (FBA) is used to optimize the growth medium for the bioengineered gluconacetobacter hansenii to yield bacterial cellulose to be used as biomaterial for a biodegradable drone. FBA is a mathematical method used to examine how metabolites relate to each network and makes predictions for the growth of an organism and product output. It is a direct application of linear programming to biological systems that used the stoichiometric coefficient for each reaction in the system as the set of constraints for the optimization. -

Flux Balance Analysis is perfomed under steady state conditions and requires information about the stoichiometry of metabolic pathways, metabolic demands, and strain specific parameters. At steady state, there is no accumulation or depletion of metabolites in a metabolic network, so the production rate of each metabolite in the network must equal its rate of consumption (3). +
+ + +

+
Sample pathway, stoichiometric matrix, and constraints vectors.
+
+
+
+ +
+ + Flux Balance Analysis is perfomed under steady state conditions and requires information about the stoichiometry of metabolic pathways, metabolic demands, and strain specific parameters. At steady state, there is no accumulation or depletion of metabolites in a metabolic network, so the production rate of each metabolite in the network must equal its rate of consumption (3).

FBA will be used to optimize the growth conditions of g. hansenii in order to maximize the product output of cellulose. The exchange reactions determine the metabolites that are beneficial to the medium. Changing the composition will allow us to be able to determine the effect the composition has on the efficiency of the production media.

FBA will be used to optimize the growth conditions of g. hansenii in order to maximize the product output of cellulose. The exchange reactions determine the metabolites that are beneficial to the medium. Changing the composition will allow us to be able to determine the effect the composition has on the efficiency of the production media.

Revision as of 06:13, 17 October 2014

Stanford–Brown–Spelman iGEM 2014