Team:StanfordBrownSpelman/Material Waterproofing

From 2014.igem.org

(Difference between revisions)
Line 59: Line 59:
   <div id="header" class="small-8 small-centered columns">
   <div id="header" class="small-8 small-centered columns">
   <h3><center><a href="https://2014.igem.org/Team:StanfordBrownSpelman/Material_Waterproofing">Material Waterproofing</a></h3>
   <h3><center><a href="https://2014.igem.org/Team:StanfordBrownSpelman/Material_Waterproofing">Material Waterproofing</a></h3>
-
   <h2><center><a href="#images" id="pics">Images</a> ● <a href="#results" id="data">Results</a> ● <a href="#process" id="methods">Methods</a> ● <a href="#references" id="links">References</a> ● <a href="bioBricks.html">BioBricks</a></h2>
+
   <h2><center><a href="#images" id="pics">Images</a> ● <a href="#results" id="data">Results</a> ● <a href="#process" id="methods">Methods</a> ● <a href="#references" id="links">References</a> ● <a href="https://2014.igem.org/Team:StanfordBrownSpelman/BioBricks">BioBricks</a></h2>
   <h5><center>First approach: Wax ester biosynthesis</h5>
   <h5><center>First approach: Wax ester biosynthesis</h5>
<h6>The UAV being constructed would benefit from the potential to demonstrate waterproof capabilities. As such, various waterproofing mechanisms are under investigation for application to the vehicle. One of the mechanisms involves the biological manipulation of the protein involved in the secretion of lipophilic wax esters from the avian uropygial gland. Previous research has revealed that the chemical composition of the uropygial gland secretion is primarily composed of unique variations of methylhexanoic acid and fatty alcohols that react to produce wax esters. The enzymes responsible for catalyzing the esterification reaction are wax synthases. Various wax synthases have been identified across many eukaryotic and prokaryotic organisms including plants, mammals, protozoa, and bacteria. However, the current focus is bacterial and protozoan production of wax esters. Bacterial production of wax esters is most commonly associated with the Acinetobacter calcoaceticus bacterium and isoprenoid wax ester production in Marinobacter hydrocarbonoclasticus. Furthermore, the protozoan Euglena glacilis synthesizes wax esters. Therefore, an interdisciplinary approach involving molecular biology and bioinformatics will be utilized to investigate the biosynthetic production of wax esters for application in the production of the UAV.
<h6>The UAV being constructed would benefit from the potential to demonstrate waterproof capabilities. As such, various waterproofing mechanisms are under investigation for application to the vehicle. One of the mechanisms involves the biological manipulation of the protein involved in the secretion of lipophilic wax esters from the avian uropygial gland. Previous research has revealed that the chemical composition of the uropygial gland secretion is primarily composed of unique variations of methylhexanoic acid and fatty alcohols that react to produce wax esters. The enzymes responsible for catalyzing the esterification reaction are wax synthases. Various wax synthases have been identified across many eukaryotic and prokaryotic organisms including plants, mammals, protozoa, and bacteria. However, the current focus is bacterial and protozoan production of wax esters. Bacterial production of wax esters is most commonly associated with the Acinetobacter calcoaceticus bacterium and isoprenoid wax ester production in Marinobacter hydrocarbonoclasticus. Furthermore, the protozoan Euglena glacilis synthesizes wax esters. Therefore, an interdisciplinary approach involving molecular biology and bioinformatics will be utilized to investigate the biosynthetic production of wax esters for application in the production of the UAV.

Revision as of 00:28, 12 August 2014

Stanford–Brown–Spelman iGEM 2014 — Amberless Hell Cell

  • Image description goes here.

  • Image description goes here.

  • Image description goes here.


  • Image description goes here.

  • Image description goes here.

  • Image description goes here.
Results
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras venenatis lorem et odio sodales, vitae aliquet nunc ultrices. Nunc lacinia nulla urna, sed aliquam nisl fermentum sed. Phasellus vel pellentesque tortor, in tincidunt metus. Aliquam ac laoreet risus. Fusce venenatis, justo id luctus dictum, turpis libero tincidunt mauris, sit amet tempor lectus tortor ut ante. Pellentesque egestas felis et est venenatis, eget lobortis dui adipiscing. Suspendisse volutpat sem eu ornare tincidunt. Mauris pharetra sed justo vitae sodales. Nulla in sodales tortor, placerat tempor dui.
Methods & Safety
Fusce venenatis, justo id luctus dictum, turpis libero tincidunt mauris, sit amet tempor lectus tortor ut ante. Pellentesque egestas felis et est venenatis, eget lobortis dui adipiscing. Suspendisse volutpat sem eu ornare tincidunt. Mauris pharetra sed justo vitae sodales. Nulla in sodales tortor, placerat tempor dui.
Links & References
Suspendisse volutpat sem eu ornare tincidunt. Mauris pharetra sed justo vitae sodales. Nulla in sodales tortor, placerat tempor dui.
Additional Information
Try to avoid having any additional information here. We're trying to keep our site organized, clean, and compelling!