Team:StanfordBrownSpelman/Human Practices

From 2014.igem.org

(Difference between revisions)
Line 61: Line 61:
   <div id="header" class="small-8 small-centered columns">
   <div id="header" class="small-8 small-centered columns">
   <h3><center><a href="https://2014.igem.org/Team:StanfordBrownSpelman/Human_Practices">Uses of UAVs &amp; Orthogonal <br> Systems in Nature</a></h3>
   <h3><center><a href="https://2014.igem.org/Team:StanfordBrownSpelman/Human_Practices">Uses of UAVs &amp; Orthogonal <br> Systems in Nature</a></h3>
-
   <h6><center><a href="#images" id="pics">Images</a> ● <a href="#results" id="data">EPA Partnership</a>  ● <a href="#interviews">Interviews</a> ● <a href="#references" id="contact">Publications</a> ● <a href="#references" id="links">References</a></h6>
+
   <h6><center><a href="#images" id="pics">Images</a> ● <a href="#results" id="data">EPA Partnership</a>  ● <a href="#interviews">Our Approach</a> ● <a href="#references" id="contact">Interviews</a> ● <a href="#references" id="links">References</a></h6>
   <h6>
   <h6>
   Unmanned Aerial Vehicles (UAVs) (also known as Unmanned Aircraft Systems (UAS) in Europe) have a long history of usage. According to DraganFly Innovations Inc., early UAVs took the form of balloons and they were primarily used for military purposes for monitoring and eliminating enemies in the battlefield. However, in the recent years, UAVs have been increasingly used by civilians to accomplish various scientific and humanitarian missions. Due to their promising ability to accomplish tasks that otherwise could have been tedious, unreachable or even dangerous to civilians, our team has considered the idea of improving the current models of UAVs in order to make them more biodegradable, modular and even cheaper and hence increase their accessibility and practicability to the scientific and civilian societies.  
   Unmanned Aerial Vehicles (UAVs) (also known as Unmanned Aircraft Systems (UAS) in Europe) have a long history of usage. According to DraganFly Innovations Inc., early UAVs took the form of balloons and they were primarily used for military purposes for monitoring and eliminating enemies in the battlefield. However, in the recent years, UAVs have been increasingly used by civilians to accomplish various scientific and humanitarian missions. Due to their promising ability to accomplish tasks that otherwise could have been tedious, unreachable or even dangerous to civilians, our team has considered the idea of improving the current models of UAVs in order to make them more biodegradable, modular and even cheaper and hence increase their accessibility and practicability to the scientific and civilian societies.  
Line 140: Line 140:
<div class="row">
<div class="row">
   <div id="interviews" class="small-8 small-centered columns">
   <div id="interviews" class="small-8 small-centered columns">
-
   <h5><center>Interviews (rename this)</h5>
+
   <h5><center>Our Approach</h5>
-
  <h6>
+
<h6>
-
              We interviewed 5 experts: 4 from NASA Ames Research Center and 1 from Brown University.  From NASA Ames, we had the honor to interview Dr. Lynn Rothschild (expert in Synthetic Biology and the supervisor of SBS-IGEM team), Vince Ambrosia (Earth Scientist), Matthew Fladeland () and Randy Berthold (). From Brown University, we had a pleasure of interview Prof. Jim Head who is an expert on planetary sciences and Satellite missions.  
+
In order to fully understand the benefits, risks and ethics of using UAVs and to address the stigma surrounding their use, we first had to get first hand information from experts who work on, or use UAVs for their daily activities. To do this, we conducted short interviews (15 minutes long) with experts from various fields including Earth Sciences, Planetary Sciences, Synthetic Biology and Remote Sensing.  The responses from these experts increased our knowledge on the current uses of UAVs, the capabilities of the current models, the regulations of handling UAVs and the future of this technology. We have used (and will continue to use) these responses as a tool to increase awareness to people of the good uses of UAVs.
 +
<br><br>
 +
In addition to interviewing experts, we conducted a social survey that was aimed at getting the general public’s opinion on the uses of UAVs for civilian uses. This survey correlated people’s knowledge of UAVs and their opinions on UAVs and apart from helping us get a general sense of the public’s opinion, it has made us believe that, the more people know about the beneficial uses of UAVs, the more they will be willing to try, use or even add to this new technology.
-
All of the interviewees were asked the same questions ranging from how they use UAVs in their specific jobs, their opinion on synthetic biology and the future of UAVs. The links of the videos have been posted on our wiki. Before giving the detailed responses of the interviews, we have compiled the answers of each question so as to get a list of uses of UAVS.
+
</h6>
-
<br>
+
-
  <div class="sub4"><a href="work/PUT-PDF-REFERENCE-HEREpdf"><img src="https://static.igem.org/mediawiki/2014/2/25/SBS_iGEM_2014_download.png"></a><a href="work/PUT-PDF-REFERENCE-HEREpdf">Click here to download our project journal, which details our design and engineering process and included descriptions of the protocols we developed and used.</a></div>
+
-
                                <div class="sub4"><a href="work/PUT-PDF-REFERENCE-HEREpdf"><img src="https://static.igem.org/mediawiki/2014/2/25/SBS_iGEM_2014_download.png"></a><a href="work/PUT-PDF-REFERENCE-HEREpdf">Click here to download our project journal, which details our design and engineering process and included descriptions of the protocols we developed and used.</a></div>
+
-
  <div class="sub4"><a href="work/PUT-PDF-REFERENCE-HEREpdf"><img src="https://static.igem.org/mediawiki/2014/2/25/SBS_iGEM_2014_download.png"></a><a href="work/PUT-PDF-REFERENCE-HEREpdf">Click here to download our project journal, which details our design and engineering process and included descriptions of the protocols we developed and used.</a></div>
+
-
                                <div class="sub4"><a href="work/PUT-PDF-REFERENCE-HEREpdf"><img src="https://static.igem.org/mediawiki/2014/2/25/SBS_iGEM_2014_download.png"></a><a href="work/PUT-PDF-REFERENCE-HEREpdf">Click here to download our project journal, which details our design and engineering process and included descriptions of the protocols we developed and used.</a></div>
+
-
            </h6>
+
   </div>
   </div>
</div>
</div>
Line 168: Line 164:
   <h5><center>Publications</h5>
   <h5><center>Publications</h5>
   <h6>
   <h6>
-
                Fusce venenatis, justo id luctus dictum, turpis libero tincidunt mauris, sit amet tempor lectus tortor ut ante. Pellentesque egestas felis et est venenatis, eget lobortis dui adipiscing.<br>
+
We interviewed 5 experts: 4 from NASA Ames Research Center and 1 from Brown University.  From NASA Ames, we had the honor to interview Dr. Lynn Rothschild (expert in Synthetic Biology and the supervisor of SBS-IGEM team), Vince Ambrosia (Earth Scientist), Matthew Fladeland () and Randy Berthold (). From Brown University, we had a pleasure of interview Prof. Jim Head who is an expert on planetary sciences and Satellite missions.
 +
<br><br>
 +
All of the interviewees were asked the same questions ranging from how they use UAVs in their specific jobs, their opinion on synthetic biology and the future of UAVs. The links of the videos have been posted on our wiki. Before giving the detailed responses of the interviews, we have compiled the answers of each question so as to get a list of uses of UAVS.  
 +
<br>
   <div class="sub4"><a href="work/PUT-PDF-REFERENCE-HEREpdf"><img src="https://static.igem.org/mediawiki/2014/2/25/SBS_iGEM_2014_download.png"></a><a href="work/PUT-PDF-REFERENCE-HEREpdf">Click here to download our project journal, which details our design and engineering process and included descriptions of the protocols we developed and used.</a></div>
   <div class="sub4"><a href="work/PUT-PDF-REFERENCE-HEREpdf"><img src="https://static.igem.org/mediawiki/2014/2/25/SBS_iGEM_2014_download.png"></a><a href="work/PUT-PDF-REFERENCE-HEREpdf">Click here to download our project journal, which details our design and engineering process and included descriptions of the protocols we developed and used.</a></div>
                                 <div class="sub4"><a href="work/PUT-PDF-REFERENCE-HEREpdf"><img src="https://static.igem.org/mediawiki/2014/2/25/SBS_iGEM_2014_download.png"></a><a href="work/PUT-PDF-REFERENCE-HEREpdf">Click here to download our project journal, which details our design and engineering process and included descriptions of the protocols we developed and used.</a></div>
                                 <div class="sub4"><a href="work/PUT-PDF-REFERENCE-HEREpdf"><img src="https://static.igem.org/mediawiki/2014/2/25/SBS_iGEM_2014_download.png"></a><a href="work/PUT-PDF-REFERENCE-HEREpdf">Click here to download our project journal, which details our design and engineering process and included descriptions of the protocols we developed and used.</a></div>

Revision as of 20:43, 6 October 2014

Stanford–Brown–Spelman iGEM 2014 — Human Practices

  • Image description goes here.

  • Image description goes here.

  • Image description goes here.


  • Image description goes here.

  • Image description goes here.

  • Image description goes here.
Our Work with the EPA: Synthetic biology in the air: Biological UAVs and environmental safety concerns

We are currently working on a series of projects towards the construction of a fully biological unmanned aerial vehicle (UAV) for use in scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities – for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight – these problems of scale can be avoided.

However, housing live cells on an aerial system presents a new set of problems, chief amongst which is the concern of horizontal gene transfer. Bacterial cells can perform conjugation, a process which allows for plasmids (small, circular strands of DNA) to be copied from one organism to another. In our case, we must take steps to protect the environment from our cells and avoid the possibility that our engineered genes proliferate throughout ecosystems. In addition, not dissimilar to the problem of mechanical UAVs getting lost or crashing and leaching toxins into the environment, we must address what might happen if our biological UAV were to crash and allow the cells on its biofilm to act as an invasive species.

We are harnessing the power of genetic engineering to mitigate both of these scenarios. To address horizontal gene transfer, we are recoding the cells on our UAV to use the UAG stop codon, which usually signals the truncation of a protein during translation, as leucine, an amino acid, instead. When we engineer the genes we wish to transform into our cells (an “amberless” strain, as UAG stop is called “amber”), all instances of UAG will be replaced with different stop codons, and all leucine residues will be coded for by UAG. Thus, any engineered genes which are passed from an amberless cell to a normal cell in the environment will not be read correctly, as each leucine residue will be instead be interpreted as “stop” and will result in the production of a non-functional protein fragment. We hope that our amberless strain can be adopted as a model for any engineered organisms one might wish to send into the environment. Finally, to address the invasion of our cells into the environment, we are engineering a pressure-sensitive “kill switch.” Upon crash, the cells will activate quorum sensing (a method of intercellular communication), which will act as a signal to begin producing a set of proteins which can degrade the cellulose acetate base material. The UAV itself will degrade into glucose, which can be taken up by organisms in the crash environment, while the engineered cells will be killed by the free acetate, which, hopefully, will be in high enough concentration to harm the biofilm but not the crash environment.

Our Approach
In order to fully understand the benefits, risks and ethics of using UAVs and to address the stigma surrounding their use, we first had to get first hand information from experts who work on, or use UAVs for their daily activities. To do this, we conducted short interviews (15 minutes long) with experts from various fields including Earth Sciences, Planetary Sciences, Synthetic Biology and Remote Sensing. The responses from these experts increased our knowledge on the current uses of UAVs, the capabilities of the current models, the regulations of handling UAVs and the future of this technology. We have used (and will continue to use) these responses as a tool to increase awareness to people of the good uses of UAVs.

In addition to interviewing experts, we conducted a social survey that was aimed at getting the general public’s opinion on the uses of UAVs for civilian uses. This survey correlated people’s knowledge of UAVs and their opinions on UAVs and apart from helping us get a general sense of the public’s opinion, it has made us believe that, the more people know about the beneficial uses of UAVs, the more they will be willing to try, use or even add to this new technology.
Publications
We interviewed 5 experts: 4 from NASA Ames Research Center and 1 from Brown University. From NASA Ames, we had the honor to interview Dr. Lynn Rothschild (expert in Synthetic Biology and the supervisor of SBS-IGEM team), Vince Ambrosia (Earth Scientist), Matthew Fladeland () and Randy Berthold (). From Brown University, we had a pleasure of interview Prof. Jim Head who is an expert on planetary sciences and Satellite missions.

All of the interviewees were asked the same questions ranging from how they use UAVs in their specific jobs, their opinion on synthetic biology and the future of UAVs. The links of the videos have been posted on our wiki. Before giving the detailed responses of the interviews, we have compiled the answers of each question so as to get a list of uses of UAVS.
Additional Information
Try to avoid having any additional information here. We're trying to keep our site organized, clean, and compelling!
Built atop Foundation. Content &amp Development © Stanford–Brown–Spelman iGEM 2014.