Team:StanfordBrownSpelman/Amberless Hell Cell

From 2014.igem.org

(Difference between revisions)
Line 47: Line 47:
   <div id="header" class="small-8 small-centered columns">
   <div id="header" class="small-8 small-centered columns">
   <h3><center><a href="https://2014.igem.org/Team:StanfordBrownSpelman/Amberless_Hell_Cell">Amberless Hell Cell</a></h3>
   <h3><center><a href="https://2014.igem.org/Team:StanfordBrownSpelman/Amberless_Hell_Cell">Amberless Hell Cell</a></h3>
-
   <div class="boxedmenu"><h7><center><a href="#" id="intro">Introduction</a> ● <a href="#" id="methods">Approach</a> ● <a href="#" id="data">Results</a> ● <a href="#" id="links">References</a> ● <a href="https://2014.igem.org/Team:StanfordBrownSpelman/BioBricks#AHC">BioBricks</a></h7></div>
+
   <div class="boxedmenu"><h7><center><a href="#" id="intro">Introduction</a> ● <a href="#" id="methods">Methods</a> ● <a href="#" id="data">Results</a> ● <a href="#" id="links">References</a> ● <a href="https://2014.igem.org/Team:StanfordBrownSpelman/BioBricks#AHC">BioBricks</a></h7></div>
   <h6 id="int">
   <h6 id="int">
   For an application of synthetic biology where live, genetically-modified cells will come in direct contact with the environment, such as biological sensors on a UAV, two concerns must be addressed. First, the cells need to be resistant to widely-varying conditions that may be present in the environment; second, in order to address ethical concerns about releasing genetically-modified organisms, it is desirable to reduce horizontal gene transfer from the engineered cells into cells naturally present in the environment. In order to solve both of these issues, and therefore to create an ideal chassis for synthetic biology in environmental applications, we will combine two research goals:
   For an application of synthetic biology where live, genetically-modified cells will come in direct contact with the environment, such as biological sensors on a UAV, two concerns must be addressed. First, the cells need to be resistant to widely-varying conditions that may be present in the environment; second, in order to address ethical concerns about releasing genetically-modified organisms, it is desirable to reduce horizontal gene transfer from the engineered cells into cells naturally present in the environment. In order to solve both of these issues, and therefore to create an ideal chassis for synthetic biology in environmental applications, we will combine two research goals:

Revision as of 00:16, 16 October 2014

Stanford–Brown–Spelman iGEM 2014 — Amberless Hell Cell

Approach & Methods
Methods here.


Figure 1. Figure caption here.
More methods here.


Figure 2. Figure caption here.

Results
Results go here.


Figure #. Figure caption here.
More results here.
References
1. Lajoie MJ et al. (2013) Genomically Recoded Organisms Impart New Biological Functions. Science 342: 357-60. PMID: 24136966.

2. Thorbjarnardóttir, S. et al. (1985) Leucine tRNA family of Escherichia coli: nucleotide sequence of the supP(Am) suppressor gene. J. Bacteriol. 161: 219–22. PMID: 2981802.
Additional Information
Read about how our submitted Amberless Hell Cell idea was used as a government regulatory case study on synthetic biology. We then began a conversation with Dr. Mark Segal at the EPA about the regulation and safety of the use of engineered bacteria in the environment.

Submitted biobricks: We submitted 9 biobricks for this sub-project. Six of these bricks include parts that can enable other teams to use the Amberless chassis as a system for more responsible synthetic biology.
Built atop Foundation. Content &amp Development © Stanford–Brown–Spelman iGEM 2014.