Team:SCUT-China/Modeling/Overview

From 2014.igem.org

(Difference between revisions)
 
(14 intermediate revisions not shown)
Line 1: Line 1:
-
{{Template:Team:SCUT-China/mainhead}}
+
{{Template:Team:SCUT-China/mainpage}}
Line 6: Line 6:
<style type="text/css">
<style type="text/css">
-
body{background:url(https://static.igem.org/mediawiki/2014/c/c4/Bg8.jpg);}
+
.head{margin:-100px auto;font-family:Arial, Helvetica, sans-serif;font-size:50px;font-weight:bold;text-align:center;}
 +
#container{margin:140px 20px;}
 +
.title{font-family:'Traditional Arabic', Helvetica, sans-serif;font-size:28px;font-weight:bold;color:#C6F;}
-
.bgdiv{position:absolute;left:15%;top:100px;width:70%;height:1800px;background-color:white;opacity:0.5;}
+
.bold{font-family:'Traditional Arabic', Helvetica, sans-serif;font-size:22px;font-weight:bold;}
-
.overview{position:absolute;left:15%;top:100px;width:70%;font-family:Arial, Helvetica, sans-serif;font-size:50px;font-weight:bold;color:black;text-align:center;}
+
p{font-family:'Traditional Arabic', Helvetica, sans-serif;font-size:20px;text-align:justify;}
-
.intro{font-family:Arial, Helvetica, sans-serif;font-size:18px;text-align:justify;}
 
-
.words{position:absolute;left:18%;top:230px;width:64%;height:auto;border-top:3px dotted #C6F;}
+
table {border-collapse:collapse;text-align: center;background:transparent;}
-
 
+
table td{font-family:Arial, Helvetica, sans-serif;font-size:18px;}
-
.title{font-family:Arial, Helvetica, sans-serif;font-size:18px;font-weight:bold;color:#C6F;}
+
table tr,td{border:1px solid #C6F;}
-
 
+
-
.words table {border-collapse:collapse;text-align: center;background:transparent;}
+
-
.words table td{font-family:Arial, Helvetica, sans-serif;font-size:18px;}
+
-
.words table tr,td{border:1px solid #C6F;}
+
-
.words p{font-family:Arial, Helvetica, sans-serif;font-size:18px;}
+
-
 
+
-
.logo{position:absolute;left:18%;top:120px;width:auto;height:100px;}
+
.introduction{font-family:Arial, Helvetica, sans-serif;font-size:24px;font-weight:bold;color:#C6F;}
.introduction{font-family:Arial, Helvetica, sans-serif;font-size:24px;font-weight:bold;color:#C6F;}
-
.bold{font-family:Arial, Helvetica, sans-serif;font-size:18px;font-weight:bold;}
 
</style>
</style>
</head>
</head>
-
<body>
+
<body style="background-image:url('https://static.igem.org/mediawiki/2014/c/c4/Bg8.jpg');">
-
<div class="bgdiv">
+
<div id="navi">
 +
<div id="navislide">
 +
  <div class="navimenu_head">
 +
  <a href="https://2014.igem.org/Team:SCUT-China/Modeling/Overview">Overview</a>
 +
  </div>
 +
 
 +
  <div class="navimenu_head">
 +
  <a href="https://2014.igem.org/Team:SCUT-China/Modeling/Simulation">Simulation</a>
 +
  </div>
 +
  <div class="navimenu_body">
 +
    <a href="#">Reactions and Mechanism</a>
 +
<a href="#">Kinetic Equations</a>
 +
<a href="#">Reference</a>
 +
  </div>
 +
  <div class="navimenu_head">
 +
  <a href="https://2014.igem.org/Team:SCUT-China/Modeling/Results">Results</a>
 +
  </div>
 +
  <div class="navimenu_body">
 +
    <a href="#">Analysis</a>
 +
<a href="#">Future Work</a>
 +
  </div>
 +
</div>
</div>
</div>
-
<img class="logo" src="https://static.igem.org/mediawiki/2014/b/bc/Logo%2Bline.png"/>
+
<div id="whole">
 +
<div class="bgdiv">
 +
  <img class="logo" src="https://static.igem.org/mediawiki/2014/b/bc/Logo%2Bline.png" />
 +
  <p class="head">Overview</p>
 +
  <div id="container">
 +
  <p>We devote to dividing the polyketide synthases (PKSs) and catalyze according to specific mechanism. Therefore, as if we standardize the genes which encode independent domains of PKSs, we can synthesize new kinds of polyketides by means of permutation and combination of domains.
 +
  <br/><br/>
 +
<img src="https://static.igem.org/mediawiki/2014/1/1e/A2.jpg" style="width:850px;"/><br/><br/>
-
<p class="overview">
+
      In the process of analyzing the DEBS1 which catalyze and synthesize 6-deoxyerythronolide B (6dEB),the precursor of erythromycin, we know that each domain has independent and specific chemical reaction and function.
-
Overview
+
  </br>
-
<p>
+
-
<div class="words">
+
  <table width="100%" border="0">
-
<p class="intro">
+
    <tr>
-
We devote to dividing the polyketide synthases (PKSs) and catalyze according to specific mechanism. Therefore, as if we standardize the genes which encode independent domains of PKSs, we can synthesize new kinds of polyketides by means of permutation and combination of domains.<br/><br/>
+
    <td class="title"><br/><br/>Name of domain<br/><br/></td>
 +
    <td class="title"><br/><br/>Function<br/><br/></td>
 +
    </tr>
 +
    <tr>
 +
    <td><br/><br/>Acyltransfer-ase, AT<br/><br/></td>
 +
    <td><br/><br/>Activating the extended unit------- propionyl group<br/><br/></td>
 +
    </tr>
 +
    <tr>
 +
    <td><br/><br/>Acyl carrier protein, ACP<br/><br/></td>
 +
    <td><br/><br/>Anchor the polyketide chain needed to extend<br/><br/></td>
 +
    </tr>
 +
    <tr>
 +
    <td><br/><br/>Ketocaylsynthase, KS<br/><br/></td>
 +
    <td><br/><br/>Combining the propionyl group with acetyl group at the end of the polyketide chain by forming the C—C bond<br/><br/></td>
 +
    </tr>
 +
    <tr>
 +
    <td><br/><br/>Keto-reductase, KR<br/><br/></td>
 +
    <td><br/><br/>Deoxidizing the extended unit and enabling it to form the β-hydroxyl ester bond<br/><br/></td>
 +
    </tr>
 +
    <tr>
 +
    <td><br/><br/>Dehydratase, DH<br/><br/></td>
 +
    <td><br/><br/>Dehydrating the extended unit and enabling it to form the α, β- enol ester bond<br/><br/></td>
 +
    </tr>
 +
    <tr>
 +
    <td><br/><br/>Enoylreductase, ER<br/><br/></td>
 +
    <td><br/><br/>Deoxidizing the extended unit and enabling it to form the saturated methylene<br/><br/></td>
 +
    </tr>
 +
    <tr>
 +
    <td><br/><br/>Thioesterase, TE<br/><br/></td>
 +
    <td><br/><br/>Removing the polyketide chain from PKS<br/><br/></td>
 +
    </tr>
 +
  </table><br/><br/>
-
In the process of analyzing the DEBS1 which catalyze and synthesize 6-deoxyerythronolide B (6dEB),the precursor of erythromycin, we know that each domain has independent and specific chemical reaction and function.
+
  <p>
-
</p><br/><br/>
+
-
 
+
-
<table width="100%" border="0">
+
-
  <tr>
+
-
    <td class="title"><br/><br/>Name of domain<br/><br/></td>
+
-
    <td class="title"><br/><br/>Function<br/><br/></td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td><br/><br/>Acyltransfer-ase, AT<br/><br/></td>
+
-
    <td><br/><br/>Activating the extended unit------- propionyl group<br/><br/></td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td><br/><br/>Acyl carrier protein, ACP<br/><br/></td>
+
-
    <td><br/><br/>Anchor the polyketide chain needed to extend<br/><br/></td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td><br/><br/>Ketocaylsynthase, KS<br/><br/></td>
+
-
    <td><br/><br/>Combining the propionyl group with acetyl group at the end of the polyketide chain by forming the C—C bond<br/><br/></td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td><br/><br/>Keto-reductase, KR<br/><br/></td>
+
-
    <td><br/><br/>Deoxidizing the extended unit and enabling it to form the β-hydroxyl ester bond<br/><br/></td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td><br/><br/>Dehydratase, DH<br/><br/></td>
+
-
    <td><br/><br/>Dehydrating the extended unit and enabling it to form the α, β- enol ester bond<br/><br/></td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td><br/><br/>Enoylreductase, ER<br/><br/></td>
+
-
    <td><br/><br/>Deoxidizing the extended unit and enabling it to form the saturated methylene<br/><br/></td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td><br/><br/>Thioesterase, TE<br/><br/></td>
+
-
    <td><br/><br/>Removing the polyketide chain from PKS<br/><br/></td>
+
-
  </tr>
+
-
</table><br/><br/>
+
-
 
+
-
 
+
-
<p class="intro">
+
By preliminary analysis of chemical reaction and function of each domain, we can conclude that it is available to analyze their own kinetic mechanism, and it's significant. If we simulate the kinetic equations of chemical reactions occurring in each domain, we can finally establish kinetic model of PKSs related to all kinds of polyketides. <br/><br/>
By preliminary analysis of chemical reaction and function of each domain, we can conclude that it is available to analyze their own kinetic mechanism, and it's significant. If we simulate the kinetic equations of chemical reactions occurring in each domain, we can finally establish kinetic model of PKSs related to all kinds of polyketides. <br/><br/>
Aimed at the final goal of our project, we simulated the kinetic equations of chemical reactions occurring in each domain, including AT, ACP, KS, KR, ER, DH, and TE. Then we tested these equations and analyzed their feasibility.<br/><br/>
Aimed at the final goal of our project, we simulated the kinetic equations of chemical reactions occurring in each domain, including AT, ACP, KS, KR, ER, DH, and TE. Then we tested these equations and analyzed their feasibility.<br/><br/>
 +
 +
<img src="https://static.igem.org/mediawiki/2014/7/77/B1.jpg" style="float:right;clear:both;margin:10px 0 10px 30px;width:400px;"/>
DEBS 1 is the first part of the PKS which catalyzes and synthesizes 6dEB, the precursor of erythromycin. Its domain sequence is AT, ACP, KS, AT, KR, ACP, KS, AT, KR, ACP. Theoretically, the kinetic model of domains which have been stacked is match with the kinetic model of DEBS 1+TE.  <br/><br/>
DEBS 1 is the first part of the PKS which catalyzes and synthesizes 6dEB, the precursor of erythromycin. Its domain sequence is AT, ACP, KS, AT, KR, ACP, KS, AT, KR, ACP. Theoretically, the kinetic model of domains which have been stacked is match with the kinetic model of DEBS 1+TE.  <br/><br/>
In modeling section, we kept pace with the members who are responsible for experiment. We stacked the related equations according to the sequence of DEBS 1+TE. Meanwhile, we also simulated the kinetic equations of the whole DEBS 1+TE. Then we compared the equations of domains which have been stacked with the equation of DEBS 1+TE, and verified the feasibility of the model.
In modeling section, we kept pace with the members who are responsible for experiment. We stacked the related equations according to the sequence of DEBS 1+TE. Meanwhile, we also simulated the kinetic equations of the whole DEBS 1+TE. Then we compared the equations of domains which have been stacked with the equation of DEBS 1+TE, and verified the feasibility of the model.
-
</p>
+
  </p>
 +
  </div>
 +
</div>
 +
</div>
-
 
-
</div>
 
</body>
</body>
</html>
</html>

Latest revision as of 02:23, 18 October 2014


Overview

We devote to dividing the polyketide synthases (PKSs) and catalyze according to specific mechanism. Therefore, as if we standardize the genes which encode independent domains of PKSs, we can synthesize new kinds of polyketides by means of permutation and combination of domains.



In the process of analyzing the DEBS1 which catalyze and synthesize 6-deoxyerythronolide B (6dEB),the precursor of erythromycin, we know that each domain has independent and specific chemical reaction and function.



Name of domain



Function



Acyltransfer-ase, AT



Activating the extended unit------- propionyl group



Acyl carrier protein, ACP



Anchor the polyketide chain needed to extend



Ketocaylsynthase, KS



Combining the propionyl group with acetyl group at the end of the polyketide chain by forming the C—C bond



Keto-reductase, KR



Deoxidizing the extended unit and enabling it to form the β-hydroxyl ester bond



Dehydratase, DH



Dehydrating the extended unit and enabling it to form the α, β- enol ester bond



Enoylreductase, ER



Deoxidizing the extended unit and enabling it to form the saturated methylene



Thioesterase, TE



Removing the polyketide chain from PKS



By preliminary analysis of chemical reaction and function of each domain, we can conclude that it is available to analyze their own kinetic mechanism, and it's significant. If we simulate the kinetic equations of chemical reactions occurring in each domain, we can finally establish kinetic model of PKSs related to all kinds of polyketides.

Aimed at the final goal of our project, we simulated the kinetic equations of chemical reactions occurring in each domain, including AT, ACP, KS, KR, ER, DH, and TE. Then we tested these equations and analyzed their feasibility.

DEBS 1 is the first part of the PKS which catalyzes and synthesizes 6dEB, the precursor of erythromycin. Its domain sequence is AT, ACP, KS, AT, KR, ACP, KS, AT, KR, ACP. Theoretically, the kinetic model of domains which have been stacked is match with the kinetic model of DEBS 1+TE.

In modeling section, we kept pace with the members who are responsible for experiment. We stacked the related equations according to the sequence of DEBS 1+TE. Meanwhile, we also simulated the kinetic equations of the whole DEBS 1+TE. Then we compared the equations of domains which have been stacked with the equation of DEBS 1+TE, and verified the feasibility of the model.