Team:SCAU-China/Project-Overview

From 2014.igem.org

(Difference between revisions)
 
(16 intermediate revisions not shown)
Line 10: Line 10:
<div class="r hx-main">
<div class="r hx-main">
              
              
-
             <div class="hx-box hx-boxd hx-omega">
+
             <div class="hx-box hx-boxd hx-overview">
-
                 <div class="ti"><strong>overview</strong></div>
+
                 <div class="ti"><strong>Project</strong></div>
                     <div class="con">
                     <div class="con">
<!---->
<!---->
-
                         In view of rapid depletion of traditional energy resources and increasing demand of desalination of seawater for fresh water, we aimed to enhance the electrogenic capacity of microbial fuel cells (MFC) by genetically modified bacteria and optimize the traditional microbial desalination cells (MDC) device. We knocked out the <i>arcA</i> gene and over-expressed the <i>nadE</i> gene in <i>E. coli.</i> These modifications released the inhibition of metabolic enzymes in anaerobic condition of ArcA protein, also boosted up intracellular NAD<sup>+</sup>(H) level for higher electron transferring rate , bywhich the electrogenic capacity of the MFC was collectively enhanced resulting in a high efficient seawater desalination in MDC system.
+
                        <h5>Overview</h5>
 +
                         In view of rapid depletion of traditional energy resources and increasing demand of desalination of seawater for fresh water, we aimed to enhance the electrogenic capacity of microbial fuel cells (MFC) by genetically modified bacteria and optimize the traditional microbial desalination cells (MDC) device. We knocked out the <i>arcA</i> gene and over-expressed the <i>nadE</i> gene in <i>E. coli.</i> These modifications released the inhibition of metabolic enzymes in anaerobic condition of ArcA protein, also boosted up intracellular NAD<sup>+</sup>(H) level for higher electron transferring rate, by which the electrogenic capacity of the MFC was collectively enhanced resulting in a high efficient seawater desalination in MDC system.
 +
                        <Br />
 +
                        <Br />
 +
                        <div class="pic">
 +
                        <img src="https://static.igem.org/mediawiki/2014/e/ea/Hx-Overview_p1.jpg" />
 +
                        </div>
 +
                        <h4>MFC= more fresh water and clean energy</h4>
                         <!---->
                         <!---->
Line 26: Line 33:
     </div>
     </div>
</div>
</div>
-
 
</html>
</html>

Latest revision as of 02:06, 18 October 2014

Project
Overview
In view of rapid depletion of traditional energy resources and increasing demand of desalination of seawater for fresh water, we aimed to enhance the electrogenic capacity of microbial fuel cells (MFC) by genetically modified bacteria and optimize the traditional microbial desalination cells (MDC) device. We knocked out the arcA gene and over-expressed the nadE gene in E. coli. These modifications released the inhibition of metabolic enzymes in anaerobic condition of ArcA protein, also boosted up intracellular NAD+(H) level for higher electron transferring rate, by which the electrogenic capacity of the MFC was collectively enhanced resulting in a high efficient seawater desalination in MDC system.

MFC= more fresh water and clean energy