Team:Missouri-Columbia/OurProject

From 2014.igem.org

Revision as of 16:11, 25 July 2014 by Hrcvy4 (Talk | contribs)


UNIVERSITY OF MISSOURI

iGEM Competition Team 2014

Home Our Team Our Project Notebook Entrepreneuership Safety Sponsors


What is synthetic biology?

In general, synthetic biology is "the design and construction of biological devices and systems for useful purposes. It is an area of biological research and technology that combines biology and engineering, thus often overlapping with bioengineering and biomedical engineering. It encompasses a variety of different approaches, methodologies, and disciplines with a focus on engineering biology and biotechnology."
Source

What is a biosensor?

Simply put, a biosensor is "an analytical device, used for the detection of an analyte, that combines a biological component with a physicochemical detector."

"A biosensor typically consists of a bio-recognition component, biotransducer component, and electronic system which include a signal amplifier, processor, and display. Transducers and electronics can be combined, e.g., in CMOS-based microsensor systems. The recognition component, often called a bioreceptor, uses biomolecules from organisms or receptors modeled after biological systems to interact with the analyte of interest. This interaction is measured by the biotransducer which outputs a measurable signal proportional to the presence of the target analyte in the sample. The general aim of the design of a biosensor is to enable quick, convenient testing at the point of concern or care where the sample was procured."
Source

The Human Immunodeficiency Virus (HIV)

HIV is one of a group of atypical viruses called retroviruses that maintain their genetic information in the form of ribonucleic acid (RNA). Through the use of an enzyme known as reverse transcriptase, HIV and other retroviruses are capable of producing deoxyribonucleic acid (DNA) from RNA, whereas most cells carry out the opposite process, transcribing the genetic material of DNA into RNA. The activity of the enzyme enables the genetic information of HIV to become integrated permanently into the genome (chromosomes) of a host cell.

The primary hosts for HIV are the white blood cells variously called helper T lymphocytes, helper T cells, or CD4+ T cells. These cells are important components of the immune system that are normally responsible for activating the responses of many other immune cells. Helper T cells that become infected with HIV rapidly die. Soon after primary infection, the body is usually able to compensate for the loss of infected T cells by producing them in greater quantities, at which time individuals infected with HIV are asymptomatic. Over time, however, the virus becomes increasingly acute and there is a slow decline of helper T cells. Consequently, the number of helper T cells in the body (termed the CD4 count) is generally utilized to gauge the advance of the virus. A CD4 count of less than approximately 200 cells per microliter of blood may be accompanied by a variety of opportunistic infections and is considered the final stage of infection. The persistent barrage of such infections is what typically leads to the death of AIDS patients.

"HIV is a relatively complex virus that is able to infect helper T cells chiefly due to a glycoprotein embedded in its envelope called gp120 (see Figure 1) that attaches to CD4, a protein found on the surfaces of the T cells. Entry of HIV into a host cell is also thought to involve a co-receptor on the cell surface, either CCR5 or CXCR4, which typically function as receptors of chemokines. The HIV virus envelope is a derivative of the plasma membrane of a host cell, obtained via budding. When HIV attempts to enter a cell, interactions between cell surface molecules and viral envelope proteins allow the envelope to fuse with the cell membrane. The envelope protein called gp41 is known to play an important role in this process.

In an infected cell, HIV undergoes reverse transcription, producing double-stranded DNA from its RNA with the help of reverse transcriptase, a specialized virus-specific enzyme that transcribes DNA from an RNA template. Once in DNA form, the genetic information of HIV is incorporated as a provirus with the host cell DNA. The proviral genome can subsequently be transcribed into viral RNA that functions as mRNA for translation into HIV proteins and as genomes for the subsequent generation of the virus. Capsids form around the viral genomes and proteins before they are budded from the cell membrane, further encapsulating the material into envelopes.

The replication process of HIV is associated with a very high mutation rate because reverse transcription does not allow for correction of errors in nucleotide incorporation. HIV evolves at rate a million times more rapid than the evolution of the human genome, making it extremely difficult for the immune system to recognize and effectively combat. For similar reasons, the development of drugs or vaccines for HIV is a complicated endeavor, the virus not only varying greatly from patient to patient, but even exhibiting significant genomic discrepancies in individuals. A cure for HIV continues to remain elusive, but significant advances have greatly improved the quality of care that patients can receive. Highly active antiretroviral therapy (HAART), which involves the use of multiple reverse transcriptase and protease inhibitors, has proved a highly beneficial form of treatment for many patients, but the cost of the therapy has prevented its widespread use in many parts of the world hardest hit by HIV and AIDS."
© 1995-2013 by Michael W. Davidson and The Florida State University. Source

Our Project


MORE PROJECT DETAILS TO COME!