Team:Imperial/Mass Production and Processing

From 2014.igem.org

(Difference between revisions)
Line 23: Line 23:
                     <section id="introduction">
                     <section id="introduction">
                         <h2>Introduction</h2>
                         <h2>Introduction</h2>
-
<br/> <p> Bacterial cellulose (BC) exhibits a <a href="http://2014.igem.org/Team:Imperial/Project_Background">multitude of different properties</a> depending on the processing, growth conditions, functionalisation and strain used (Bismarck 2013) for production of the material. Acquiring large quantities of cellulose produced would allow testing of a broad variety of cellulose processing methods and functionalisation steps. </p>
+
<br/>  
 +
 
 +
<figure class="content-image image-right">
 +
                        <img class="image-full" src=http://2014.igem.org/wiki/images/7/7b/IC14-Post-prod-fig-1-blue.png >
 +
                        <figcaption>Figure 1: Blue dyed bacterial cellulose</figcaption>
 +
                    </figure>
 +
 
 +
<p> Bacterial cellulose (BC) exhibits a <a href="http://2014.igem.org/Team:Imperial/Project_Background">multitude of different properties</a> depending on the processing, growth conditions, functionalisation and strain used (Bismarck 2013) for production of the material. Acquiring large quantities of cellulose produced would allow testing of a broad variety of cellulose processing methods and functionalisation steps. </p>
<p> By mass producing cellulose this enables a better understanding of what material properties can be realistically produced during the short duration of iGEM. More importantly, it improves the likelihood of finding suitable processing candidates for the project’s aim of making a customisable ultrafiltration membrane, at the same time as allowing room for creativity and exploration of the remarkable properties of cellulose. </p>
<p> By mass producing cellulose this enables a better understanding of what material properties can be realistically produced during the short duration of iGEM. More importantly, it improves the likelihood of finding suitable processing candidates for the project’s aim of making a customisable ultrafiltration membrane, at the same time as allowing room for creativity and exploration of the remarkable properties of cellulose. </p>

Revision as of 03:09, 18 October 2014

Imperial iGEM 2014

Mass Production and Processing

Introduction


Figure 1: Blue dyed bacterial cellulose

Bacterial cellulose (BC) exhibits a multitude of different properties depending on the processing, growth conditions, functionalisation and strain used (Bismarck 2013) for production of the material. Acquiring large quantities of cellulose produced would allow testing of a broad variety of cellulose processing methods and functionalisation steps.

By mass producing cellulose this enables a better understanding of what material properties can be realistically produced during the short duration of iGEM. More importantly, it improves the likelihood of finding suitable processing candidates for the project’s aim of making a customisable ultrafiltration membrane, at the same time as allowing room for creativity and exploration of the remarkable properties of cellulose.

Minimum requirements

  1. Treatment of BC requires killing the cells, particularly if the cells are genetically engineered, which is the aim for putting the customisable in ultrafiltration membranes.
  2. Based on brainstorming with Central Saint Martins student Zuzana, removing the colour of BC is required as it looks displeasing to the eye otherwise, and seems counter-intuituve to filter clean water with cellulose coloured like turbid water.
  3. Removal of the smell of BC has also been raised as a requirement, particularly by producers who work in close contact with the processing facilities.
  4. Mass Production Methods

    Setting up the mass production of cellulose was done according to the Kombucha media protocol (link), which involved setting up 61 trays with media and G. xylinus and yeast co-culture as shown in figure 3. The trays were left to grow up over 7 days, after which diminishing pellicle growth was detected. Upon harvesting, the pellicles were sorted according to granular pellicles (see figure 2 left) and even pellicles (figure 2 right). All pellicles were kept in distilled water in large plastic buckets or containers.

    Figure 2. left: A granular pellicle, right: even pellicle
    Component Quantity Source Cost breakdown (£) Cost (£)
    Water 4l London South West Water 4 liters of £5.5195 per m3 0.02
    400 g granulated sugar 400g Tesco's 79p per 1 kg 0.32
    Clipper green tea tea bags 4 Clipper tea 300 teabags for £9.99 0.13
    Aspall organic cider vinegar 2 Aspall Suffolk 400 ml of a £2.25 500 ml bottle 1.80
    Total 2.27
    Product
    Component Quantity Source Price breakdown (£) Price per g (£)
    Bacterial cellulose yield 60 cm by 40 cm = 0.24 m2 production from single tray 110 g/m2 x 0.24 m2 = 26.4g 0.09
    Table 1: Cost analysis for production of bacterial cellulose

References