Team:Hong Kong HKUST/riboregulator/regulatory RNAs catalog


(Difference between revisions)
Line 680: Line 680:
      <tr><td>FUNCTION  OF PART</td><td>//RNA/ncRNA/function/regulation</td></tr>
      <tr><td>FUNCTION  OF PART</td><td>//RNA/ncRNA/function/regulation</td></tr>
<tr><td>LEVEL OF REGULATION</td><td>//RNA/ncRNA/function/regulation/RNA_level</td></tr>
<tr><td>LEVEL OF REGULATION</td><td>//RNA/ncRNA/function/regulation/RNA_level</td></tr>
      <tr><td>NATURE OF PART</td><td>//RNA/ncRNA/RNA_OUT_type/ RNA_OUT</td></tr>
      <tr><td rowspan="2">NATURE OF PART</td><td>//RNA/ncRNA/RNA_OUT_type/ RNA_OUT</td></tr>
                                               <tr><td>NATURE OF PART</td><td>//RNA/ncRNA/antisense_RNA</td></tr>
                                               <tr><td style='background-color:#FFF6E5; '>//RNA/ncRNA/antisense_RNA</td></tr>

Revision as of 22:24, 17 October 2014

Catalog for regulatory RNAs

(The page was created as part of iGEM 2014 HKUST team's effort in "Project Riboregulator" to catalog existing regulatory RNAs. Over the years, the number of regulatory RNAs in Part Registry has steadily increased over time and many has been made available to end users. Based on different mode actions and natures of regulatory RNAs, they can be grouped into different categories. However, the Part Registry currently does not have a catalog page, categorizing methods or guidelines to organize and curate existing regulatory RNAs. Some of them are grouped under type "RNA", while others are not. This is not useful for looking up and utilizing them.

We would like to solve this problem by designing a list of category tags as well as a guideline, so that automated display of regulatory RNAs by the <parttable> function can be facilitated. By doing so, we hope that we can assist other users to find and use those parts efficiently.

This page was written in compliance with Part Registry's format for general Catalog Pages. Currently, the information is uploaded manually because we have yet to submit our suggestions to iGEM HQ. Upon approval, we will tag existing regulatory RNAs and complete the page. Being part of the cross-cohort "Project Riboregulator", the page is far from complete and is expected to take shape by Spring 2015. We welcome and encourage constant update and adoption of this page in the future.)

Guideline for adding Categories

Some guidelines for categorizing RNA devices under this scheme:

  1. Confirm it is non-coding RNA devices
  2. Give category for “level of regulation”
  3. List the natures of RNA devices currently under exam (the RNA devices)
  4. Compare with the properties of different types of RNA devices with the RNA devices
  5. Assign categories about “nature of part” to the RNA devices currently under exam only if the RNA device fulfils all the requirements listed for any type of RNA devices
    1. Assign “//RNA/ncRNA/others” if no matches
    2. Assign “//RNA/ncRNA/target_sequence” if it is target sequence of other ncRNA devices; Be sure also assign corresponding categories of ncRNA devices. For example, target sequence of sgRNA should be assigned for :
      • //RNA/ncRNA/target_sequence
      • //RNA/ncRNA/sgRNA
  6. Assign categories of “function of part”. Note that it may not be limited to the two function listed above. Check the existing categories to assign appropriate categories.


Riboregulators regulate translation by having two elements, a cis-repressive sequence upstream of RBS in mRNA, and a non-coding RNA device, called trans-activating RNA. The cis-repressive sequence will binds to the 5'UTR, including the RBS by Watson-Crick base pairing, the sequestration of RBS represses translation. While trans-activating RNA will form complementary bases to cis-repressive sequence and exposing RBS for ribosomal binding and allow translation.

Proposed Categories: /RNA/non_coding/post_transcriptional/Riboregulator

Part number Description Designer
Delft 2009 BBa_K175029 Weak lock
Delft 2009 BBa_K175030 Key for lcok of weak RBS
Delft 2009 BBa_K175030 Medium lock
Delft 2009 BBa_K175030 Key for Medium lock
Delft 2009 BBa_K175034 (Constitutive expression of GFP with weak RBS lock and inducible production of key for the lock Composite of K175029 + K175030
Delft 2009 BBa_K175034 Constitutive expression of GFP with medium RBS lock and inducible production of key for the lock Composite of K175031 + K175032
Caltech 2007 BBa_I759015 cis3-repressed, tet-regulated YFP
Caltech 2007 BBa_I759016 cis4-repressed, tet-regulated YFP
Caltech 2007 BBa_I759020 cis8-repressed, tet-regulated YFP
Caltech 2007 BBa_I759027 cis3-repressed, tet-regulated Q
Caltech 2007 BBa_I759028 cis4-repressed, tet-regulated Q
Caltech 2007 BBa_I759014 (cis2-repressed, tet-regulated YFP
Caltech 2007 BBa_I759017 cis5-repressed, tet-regulated YFP
Caltech 2007 BBa_I759018 cis6-repressed, tet-regulated YFP
Caltech 2007 BBa_I759019 cis7-repressed, tet-regulated YFP
Caltech 2007 BBa_I759013 cis1-repressed, tet-regulated YFP
Caltech 2007 BBa_I759032 Ptet_cis1_YFP
Caltech 2007 BBa_I759034 Ptet_cis2_YFP
Caltech 2007 BBa_I759036 Ptet_cis3_YFP
Caltech 2007 BBa_I759038 Ptet_cis4_YFP
Caltech 2007 BBa_I759040 Ptet_cis5_YFP
Caltech 2007 BBa_I759042 Ptet_cis6_YFP
Caltech 2007 BBa_I759044 Ptet_cis7_YFP
Caltech 2007 BBa_I759046 Ptet_cis8_YFP
Caltech 2007 BBa_I759023 pBAD-trans2
Caltech 2007 BBa_I759022 pBAD-trans1
Caltech 2007 BBa_I759024 pBAD-trans3
Caltech 2007 BBa_I759025 pBAD-trans4
Caltech 2007 BBa_I759026 pBAD-trans5
Peking 2007 BBa_I714070 R0040-J23078-pTet-Lock3
Peking 2007 BBa_I714080 [R0040][J23078][E0040][B0015]
Peking 2007 BBa_I714081 R0040-J01010-E0040-B0015
Peking 2007 BBa_I714037 R751+ C600 E.coli cells with traI-R751 knockout
Peking 2007 BBa_I714074 R0010-J23066-pLac-Key3-DblTerm Uses Lock and Key 3 from berkeley
K.U. Leuven 2008 BBa_K145215 FILTER Key (TetR promoter + key)
K.U. Leuven 2008 BBa_K145216 FILTER T7 RNA pol Lock from berkeley
K.U. Leuven 2008 BBa_K145217 FILTER Complete The two previous together
K.U. Leuven 2008 BBa_K145220 INVERTED TIMER
K.U. Leuven 2008 BBa_K145225 RESET lactonase
K.U. Leuven 2008 BBa_K145300 Lactonase controlled by key/lock
K.U. Leuven 2008 BBa_K145301 lacI controlled by key/lock
K.U. Leuven 2008 BBa_K145302 luxI generator controlled by key/lock
K.U. Leuven 2008 BBa_K145303 GFP generator controlled by key/lock
K.U. Leuven 2008 BBa_K145003 T7 PoPS -> RiboKey 3d
K.U. Leuven 2008 BBa_K145004 T7 PoPS + RiboLock |> LuxI
K.U. Leuven 2008 BBa_K145005 T7 PoPS + PR -> cI
K.U. Leuven 2008 BBa_K145216 FILTER T7 RNA pol
K.U. Leuven 2008 BBa_K145251 OLD RESET lactonase
K.U. Leuven 2008 BBa_K145253 OLD INVERTIMER Part 1
K.U. Leuven 2008 BBa_K145255 NEW INVERTIMER part 1
K.U. Leuven 2008 BBa_K145264 test FILTER (new)
K.U. Leuven 2008 BBa_K145265 test FILTER (old)
K.U. Leuven 2008 BBa_K145271 GFP regulated by AND-gate
K.U. Leuven 2008 BBa_K145272 GFP regulated by AND-gate
K.U. Leuven 2008 BBa_K145275 T7 polymerase generator under TetR repressible promoter (filter)
K.U. Leuven 2008 BBa_K145276 T7 polymerase generator under TetR repressible promoter
K.U. Leuven 2008 BBa_K145277 T7 DNA polymerase regulated by lock
K.U. Leuven 2008 BBa_K145278 T7 DNA polymerase regulated by [lock3d]
K.U. Leuven 2009 BBa_K238004 Vanillin synthesis
K.U. Leuven 2009 BBa_K238006 Short version of vanillin synthesis
K.U. Leuven 2009 BBa_K238012 short version II of vanillin synthesis
Groningen 2011 BBa_K607005 short version II of vanillin synthesis
Groningen 2011 BBa_K607000 PhybB_taRNA
VictoriaBC 2009 BBa_K235010 [K145303] (ribokey-controlled GFP generator)
VictoriaBC 2009 BBa_K235000 [R0010][J23066] (pLac+ribokey+stop)
VictoriaBC 2009 BBa_K235001 [J23102][J23066] (constitutive promoter+ribokey+stop)
VictoriaBC 2009 BBa_K235009 [J23102][J23032] (constitutive promoter+ribolocked RBS)
VictoriaBC 2009 BBa_K235011 [K235009][K235005] (ribokey-controlled mCherry generator)
VictoriaBC 2009 BBa_K235013 [K145303][K235000] (ribokey-mediated pLac-controlled GFP reporter)
VictoriaBC 2009 BBa_K235014 [K145303][K235001] (ribokey-mediated GFP generator)
VictoriaBC 2009 BBa_K235016 [I0500][J23032] (pAra+ribolocked RBS)
VictoriaBC 2009 BBa_K235019 [K235016][K235003] (ribokey-mediated pAra-controlled lambda repressor generator)
VictoriaBC 2009 BBa_K235021 [K235009][K235003] (ribokey-mediated lambda repressor generator)
VictoriaBC 2009 BBa_K235022 [K235018][K235019] (mCherry generator, pAra-controlled ribokey-mediated signal inversion)
VictoriaBC 2009 BBa_K235024 [K235018][K235021] (mCherry generator, ribokey-mediated signal inversion)
VictoriaBC 2009 BBa_K235025 [K235022][K235000] (NAND gate, pAra and pLac input signal control, mCherry output signal)
VictoriaBC 2009 BBa_K235026 [K235022][K235001] (NAND gate control test, pLac positive control)
VictoriaBC 2009 BBa_K235027 [K235024][K235000] (NAND gate control test, arabinose positive control)
VictoriaBC 2009 BBa_K235028 [K235024][K235001] (NAND gate control test, positive control)
Melborne2008 BBa_K085000 (lacI)promoter->key3c
Melborne2008 BBa_K085002 pTet->lock3d->GFP
Calgary 2007 BBa_I737003 OmpF controlled RNA Key
Calgary 2007 BBa_I737006 Temperature induced repression/activation of an RNA key
Calgary 2007 BBa_I737005 AHL and RNA lock controlled AraC


A riboswitch is a segment on mRNA that have the ability to detect small molecules or temperature, and regulate gene expression in on or off manner. Riboswitches usually contain a region for binding of small molecules, as known as sensor domain, and a region for gene regulation, as known as regulatory domain.In the presence of suitable ligand in the sensor domain, the structure of riboswitch will change. This change in conformation of riboswitch may give various action including translation inhibition or mRNA degradation.

Part number Description Designer


RNA-OUT is a small non-coding RNA that works at RNA level . RNA-OUT will bind to 5'UTR, which include RBS, of mRNA and prevents ribosome from binding to mRNA to inhibit translation of downstream gene. RNA-IN is also a non-coding RNA that is antisense to RNA-OUT and the binding of RNA-IN and RNA-OUT will prevent RNA-OUT from binding to mRNA, thus allowing ribosome to bind to mRNA and initiate translation.

Part number Description Designer

Small interfering RNAs (siRNAs)

siRNAs usually involved in RNA interference pathway. siRNA s are produced by "dicing" long double stranded RNA into 21-nucleotides small fragments. The siRNAs will then bind to a protein and one strand of siRNA is removed. Then siRNA, which have complementary base pairs with its target mRNA, will binds to target mRNA. The binding of siRNA usually causes the degradation of target mRNA, result in inhibition of gene expression.

Part number Description Designer

Single guiding RNA (sgRNAs)

sgRNAs are non-coding RNA that have a hairpin structure mimicking trans-acting RNA and crRNA in CRISPR system. When in complex with Cas9 the,complex are able to target specific DNA sequence and breaking double stranded DNA.

Part number Description Designer



siRNA and miRNA are two very similar RNA devices. Both of them will be processed by Dicer and both of them will from a RISC complex to carry out their function. However there are substantial differences between the two.

First, siRNA are 20 to 25 nucleotides long; while miRNAs are 19-25 nucleotides long.

Second, siRNA usually fully complement with the target mRNA; while miRNA can be partially complement with target mRNA.As a result, siRNA usually target few mRNA while miRNA can target 250-500 different mRNAs. Last but not least, siRNAs usually stem from exogenous DNA; while miRNA usually stem from endogenous DNA.

siRNA / miRNA VS antisense RNA

Antisense RNAs refers to single stranded RNAs that are complementary to mRNA. Although no specific length requirement is imposed on antisense RNA, antisense RNA usually refers to RNA with longer length by historical reason. Whereas siRNA refers to short double stranded RNAs that are 20-25 nt long; miRNA usually refers to single stranded RNA that are 19-25 nt long. Antisense RNA form duplex with mRNA, which will blocks the access of ribosome to mRNA, also the duplex may be degraded by ribonuclease exist in the cell. Either functions of siRNA and miRNA depends on RISC.

Structural scaffold VS Stability control elements

Structural scaffold refers to the folding of RNA, which has the ability to recruit various molecules, mostly proteins. Scaffold may stabilize RNA devices and therefore a scaffold can also be stability control elements. While stability control elements refers to any RNA devices that contribute to the stability of RNA devices. It is not limited to RNA scaffold. One example is poly A tail elements for mRNA, it contributes to the stability of mRNA, however it is not a loop.

Case Study

Case one: Spinach Aptamer

FUNCTION OF PART//RNA/ncRNA/function/reporter

FUNCTION OF PART : //RNA/ncRNA/function/reporter
Spinach RNA aptamer binds with fluorophores mimics the GFP, and RNA fluorophore complex emit green fluorescence upon exposure of UV light.

Since this RNA devices is not involved in gene regulation, it is not assigned with any category related to level of regulation.

CHASSIS: //Chassis/prokaryote/ecoli & //Chassis/eukaryote/human
There are evident that part are functional in the two chassis.

Case two: RNA_OUT

FUNCTION OF PART//RNA/ncRNA/function/regulation
LEVEL OF REGULATION//RNA/ncRNA/function/regulation/RNA_level

FUNCTION OF PART : //RNA/ncRNA/function/regulation
RNA_OUT binds to upstream of CDS of mRNA preventing ribosomal binding, thus down-regulate gene expression.

LEVEL OF REGULATION://RNA/ncRNA/function/regulation/RNA_level
RNA_OUT regulate gene expression by interacting with mRNA. Since it’s target is a RNA and it is exerting gene regulation.

This device fit all the requirements for RNA_OUT as mention.

  1. is antisense RNA’
  2. contains stem and loop where loop can interact with RNA_IN
  3. base pair with RNA_IN will complement to 5’ of mRNA and block access of RBS from ribosome
  4. active in trans

This device fit all the requirements for RNA_OUT as mention. This RNA device will form complementary base pairs with mRNA, also it is a single stranded RNA. Since it fulfil all requirement of antisense RNA, It is assigned to this category.




Human Practice




Retrieved from ""