Team:ETH Zurich/project/overview

From 2014.igem.org

(Difference between revisions)
(Quorum sensing)
(Integrases)
Line 62: Line 62:
Here we focus in particular on the quorum sensing circuitry of ''V. fischeri'' and ''Pseudomonas aeruginosa'', another gram-negative bacteria. The additional systems are called LasR/LasI and RhlR/RhlI, also employing AHL molecules as autoinducers and are similar to the prototypical LuxR/LuxI system. Even though a key feature of quorum sensing molecules and its receptors is high specificity designed for intraspecies communication, the structural-similarity of the different AHL molecules can cause unwanted gene expression. This cross-talk has to be taken into account when re-engineering LuxR/LuxI like systems for synthetic modules and circuits<sup>[[#refJayaraman|[6]]]</sup>.
Here we focus in particular on the quorum sensing circuitry of ''V. fischeri'' and ''Pseudomonas aeruginosa'', another gram-negative bacteria. The additional systems are called LasR/LasI and RhlR/RhlI, also employing AHL molecules as autoinducers and are similar to the prototypical LuxR/LuxI system. Even though a key feature of quorum sensing molecules and its receptors is high specificity designed for intraspecies communication, the structural-similarity of the different AHL molecules can cause unwanted gene expression. This cross-talk has to be taken into account when re-engineering LuxR/LuxI like systems for synthetic modules and circuits<sup>[[#refJayaraman|[6]]]</sup>.
-
== Integrases ==  
+
==== Integrases ====
Site specific serine recombinases, or integrases, are enzymes recognizing pairs of short and non-identical DNA sequences. Within those sites they irreversibly catalyze the excision or unidirectional inversion of DNA bases, depending on the orientation of the recognition sequence (often referred to as attB or attP). Many recombinases originate from phages integrating their genes into bacterial host genomes, hence they often do not require specific co-factors and are fully functional when heterologously expressed in bacteria. As a result, they can be employed as molecular tools in biotechnology<sup>[[#refKobi|[7]]]</sup>.
Site specific serine recombinases, or integrases, are enzymes recognizing pairs of short and non-identical DNA sequences. Within those sites they irreversibly catalyze the excision or unidirectional inversion of DNA bases, depending on the orientation of the recognition sequence (often referred to as attB or attP). Many recombinases originate from phages integrating their genes into bacterial host genomes, hence they often do not require specific co-factors and are fully functional when heterologously expressed in bacteria. As a result, they can be employed as molecular tools in biotechnology<sup>[[#refKobi|[7]]]</sup>.

Revision as of 07:49, 12 August 2014

iGEM ETH Zurich 2014

Retrieved from "http://2014.igem.org/Team:ETH_Zurich/project/overview"