Team:ETH Zurich/modeling/whole

From 2014.igem.org

(Difference between revisions)
(Created page with "{{:Team:ETH Zurich/tpl/head|Whole cell model}} {{:Team:ETH Zurich/tpl/foot}}")
Line 1: Line 1:
{{:Team:ETH Zurich/tpl/head|Whole cell model}}
{{:Team:ETH Zurich/tpl/head|Whole cell model}}
 +
<center>
 +
{{:Team:ETH Zurich/tpl/scrollbutton3|Model|green}}
 +
{{:Team:ETH Zurich/tpl/scrollbutton2|Reactions|blue}}
 +
{{:Team:ETH Zurich/tpl/scrollbutton3|Differential equations|red}}
 +
{{:Team:ETH Zurich/tpl/scrollbutton2|Leakiness|blue}}
 +
{{:Team:ETH Zurich/tpl/scrollbutton|Cross-talk|green}}
 +
</center>
 +
 +
<html><article id="Model"></html>
 +
== Model ==
 +
 +
The Quorum sensing module is mainly involved in receiving signals from the sender cells. The sender cells secrete some signalling molecules (inducers) which bind to the regulator molecules in the receiver cells, thus activating the transcription of certain genes. The model for this module is presented below.
 +
<br/>
 +
<br/>
 +
 +
=== Chemical Species ===
 +
{| class="wikitable"
 +
|-
 +
! Name
 +
! Description
 +
|-
 +
|Lux-AHL
 +
|30C6-HSL is an acyl homoserine lactone which mainly binds to LuxR.
 +
|-
 +
|LuxR
 +
|Constitutively expressed regulator protein that can bind Lux-AHL and stimulate transcription of Bxb1.
 +
|-
 +
|RLux
 +
|LuxR and Lux-AHL complex which can dimerize.
 +
|-
 +
|DRLux
 +
|Dimerized form of RLux.
 +
|-
 +
|mRNA<sub>Bxb1</sub>
 +
|mRNA of the Bxb1 integrase being transcribed by the Lux promoter.
 +
|-
 +
|Bxb1
 +
|Serine integrase that can fold into two conformations - Bxb1a and Bxb1b. We chose to use a common connotation for both conformations - Bxb1.
 +
|-
 +
|Las-AHL
 +
|30C12-HSL is an acyl homoserine lactone which mainly binds to LasR.
 +
|-
 +
|LasR
 +
|Constitutively expressed regulator protein that can bind Las-AHL and stimulate transcription of ΦC31.
 +
|-
 +
|RLas
 +
|LasR and Las-AHL complex which can dimerize.
 +
|-
 +
|DRLas
 +
|Dimerized form of RLas.
 +
|-
 +
|mRNA<sub>ΦC31</sub>
 +
|mRNA of the ΦC31 integrase being transcribed by the Lux promoter.
 +
|-
 +
|ΦC31
 +
|Serine integrase that can fold into two conformations - ΦC31a and ΦC31b. We chose to use a common connotation for both conformations - ΦC31.
 +
|}
 +
 +
<html></article></html>
 +
 +
<html><article id="Reactions"></html>
 +
 +
;For the Lux system:
 +
$$ \begin{align}
 +
&\rightarrow LuxR \\
 +
Lux-AHL+LuxR & \leftrightarrow RLux\\
 +
RLux+RLux &\leftrightarrow DRLux\\
 +
DRLux+P_{luxOFF} & \leftrightarrow P_{luxON}\\
 +
P_{luxON}&\rightarrow P_{luxON}+mRNA_{Bxb1}\\
 +
mRNA_{Bxb1}&\rightarrow Bxb1\\
 +
AHL &\rightarrow \\
 +
LuxR &\rightarrow  \\
 +
RLux &\rightarrow\\
 +
DRLux &\rightarrow\\
 +
mRNA_{Bxb1} &\rightarrow\\
 +
Bxb1 &\rightarrow
 +
\end{align}$$
 +
 +
;For the Las system:
 +
\begin{align}
 +
&\rightarrow LasR \\
 +
Las-AHL+LasR & \leftrightarrow RLas \\
 +
RLas+RLas & \leftrightarrow DRLas\\
 +
DRLas+P_{LasOFF} & \leftrightarrow P_{LasON}\\
 +
P_{LasON}&\rightarrow P_{LasON}+mRNA_{\phi C31}\\
 +
Las-AHL &\rightarrow \\
 +
LasR &\rightarrow \\
 +
RLas &\rightarrow\\
 +
DRLas &\rightarrow\\
 +
mRNA_{\phi C31} &\rightarrow \\
 +
\phi C31 &\rightarrow \\
 +
\end{align}
 +
 +
<html></article></html>
 +
 +
<html><article id=""></html>
 +
 +
Applying mass action kinetic laws, we obtain the following set of differential equations.
 +
$$\begin{align*}
 +
\frac{d[Lux-AHL]}{dt} &= k_{-RLux}[R_{Lux}]-k_{RLux}[Lux-AHL][LuxR]-d_{Lux-AHL}[Lux-AHL]\\
 +
\frac{d[LuxR]}{dt} &= \alpha_{LuxR} -k_{RLux}[Lux-AHL][LuxR] + k_{-RLux}[RLux] - d_{LuxR}[LuxR] \\
 +
\frac{d[RLux]}{dt} &=  k_{RLux}[Lux-AHL][LuxR] - k_{-RLux}[RLux]  - 2 k_{DRLux} [RLux]^2 + 2 k_{-DRLux} [DRLux] - d_{RLux} [RLux] \\
 +
\frac{d[DRLux]}{dt} &= k_{DRLux} [RLux]^2 - k_{-DRLux} [DRLux] - d_{DRLux} [DRLux] \\
 +
\frac{d[P_{LuxON}]}{dt} &= k_{P_{LuxON}} [P_{LuxOFF}][DRLux] - k_{-P_{LuxON}} [P_{LuxON}]\\
 +
\frac{d[mRNA_{Bxb1}]}{dt} &= L_{P_{Lux}} + k_{mRNA_{Bxb1}} [P_{LuxON}] - d_{mRNA_{Bxb1}} [mRNA_{Bxb1}]\\
 +
\frac{d[Bxb1]}{dt} &=  k_{mRNA_{Bxb1}} [mRNA_{Bxb1}] - d_{Bxb1}[Bxb1]\\
 +
\end{align*}$$
 +
 +
 +
The same holds true for the Las system.
 +
 +
<html></article></html>
 +
 +
<html><article id="Parameters"></html>
 +
 +
== Characterization: K<sub>mLux</sub> and K<sub>mLas</sub> ==
 +
 +
=== Data ===
 +
 +
For the Quorum sensing module we used established experimentally determined parameters for the rate of formation of RLux (reference). Since, in the literature the other parameters were estimated or fitted to their data, we decided to determine the parameters specific to our system. Hence, we used our data for the remaining parameters. Our data was mainly a transfer function of normalized GFP concentration as a function of input Lux-AHL concentrations. (link to data)
 +
 +
=== Assumptions ===
 +
 +
 +
From the original set of reactions, we reduce the rate of production of mRNA<sub>Bxb1</sub> as a Hill function of RLux instead of Mass action kinetics in terms of P<sub>LuxON</sub>  and P<sub>LuxOFF</sub>.
 +
 +
 +
Assumption A
 +
 +
We assumed that the dimerization of RLux to DRLux is quick. Quasi steady state approximation (QSSA)  as follows
 +
 +
$$\frac{d[DRLux]}{dt} = k_{DRLux} [RLux]^2 - k_{-DRLux} [DRLux] - d_{DRLux} [DRLux] \approx 0\\$$
 +
 +
Assumption B
 +
 +
Further, from literature, we found that DRLux is specific to DNA and the dissociation constant is low (k<sub>m</sub> = 0.1nM) {Reference}.  Therefore, we using QSSA again,
 +
 +
$$\frac{d[P_{LuxON}]}{dt} = k_{P_{LuxON}} [P_{LuxOFF}][DRLux] - k_{-P_{LuxON}} [P_{LuxON}] \approx 0\\$$
 +
 +
Solving, we get the rate of production of mRNA<sub>Bxb1</sub> as
 +
$$\frac{d[mRNA_{Bxb1}]}{dt} = L_{P_{Lux}} + \frac{K_{mRNA_{Bxb1}}RLux^2}{K_{mLux} + RLux^2 }- d_{mRNA_{Bxb1}} [mRNA_{Bxb1}]\\$$
 +
 +
where
 +
 +
$$K_{mLux} = \frac {k_{-P_{LuxON}}}{k_{P_{LuxON}}}.\frac {k_{-DRLux} + d_{DRLux}}{k_{DRLux}}$$
 +
 +
is a lumped parameter which we fitted to our data.
 +
 +
Similarly, lumped parameter K<sub>mLas</sub> was derived for the las system and fitted to a transfer function of normalized GFP concentration as a function of input Las-AHL.
 +
 +
<!--Further,
 +
$$K_{mRNA_{Bxb1}} = k_{mRNA_{Bxb1}} P_{LuxTOT}$$ which we assumed. -->
 +
 +
=== Parameter fitting ===
 +
 +
We used MEIGO Toolbox to fit the parameters to the transfer functions.
 +
 +
=== Range of validity of the assumptions ===
 +
These assumptions hold true for all input Lux-AHL and Las-AHL concentrations.
 +
 +
<html></article></html>
 +
 +
 +
<html><article id="Leakiness"></html>
 +
 +
 +
<html></article></html>
 +
 +
 +
<html><article id="Cross-talk"></html>
 +
 +
<html></article></html>
{{:Team:ETH Zurich/tpl/foot}}
{{:Team:ETH Zurich/tpl/foot}}

Revision as of 14:38, 12 October 2014

iGEM ETH Zurich 2014