Team:ETH Zurich/modeling/diffmodel

From 2014.igem.org

(Difference between revisions)
(Deriving diffusion rates)
(Deriving diffusion rates)
Line 69: Line 69:
-
According to Fick's law of diffusion, the flow of AHL ''&Phi;(AHL<sub>int</sub>)'' (number of molecules per second) from the bead into the cells and the flow of AHL ''&Phi; (AHL<sub>ext</sub>)'' from cells into the bead into the bead are
+
According to Fick's law of diffusion, the flow of AHL ''&Phi;(AHL<sub>int</sub>)'' (number of molecules per second) from the bead into the cells and the flow of AHL ''&Phi; (AHL<sub>ext</sub>)'' from cells into the bead are
$$\Phi(AHL_{int}) = N \sigma \mathcal{A} ([AHL_{ext}]-[AHL_{int}]) \\ \Phi(AHL_{ext}) = N \sigma \mathcal{A} ([AHL_{int}]-[AHL_{ext}])$$
$$\Phi(AHL_{int}) = N \sigma \mathcal{A} ([AHL_{ext}]-[AHL_{int}]) \\ \Phi(AHL_{ext}) = N \sigma \mathcal{A} ([AHL_{int}]-[AHL_{ext}])$$
$$\text{where }\sigma \text { is the membrane permeability}$$
$$\text{where }\sigma \text { is the membrane permeability}$$

Revision as of 17:28, 15 October 2014

iGEM ETH Zurich 2014