Team:ETH Zurich/lab/chip

From 2014.igem.org

(Difference between revisions)
(Overview)
(Overview)
Line 56: Line 56:
</gallery>
</gallery>
-
All fabricated structures were ready to use after removing the support structures and did not require additional surface treatments like sonication, curing, painting or silanization. The molds were then directly used for PDMS chip production. In addition, custom made black 96-well plates (connected wells for diffusion assays, plate reader compatible) were printed but found to be leaky over time. The material costs of the molds were in the range of US$2 to US$4 and for the 96-well plates below US$8 (about US$160 per kg of ABS). The maximum resistance to continuous heat is given as 90 degrees Celsius<sup>[[Team:ETH_Zurich/project/references#refCRC|[23]]]</sup>, as a result autoclaving at 121 degrees Celsius is not feasible (see picture below).
+
All fabricated structures were ready to use after removing the support structures and did not require additional surface treatments like sonication, curing, painting or silanization. The molds were then directly used for PDMS chip production. In addition, custom made black 96-well plates (connected wells for diffusion assays, plate reader compatible) were printed but found to be leaky over time. The material costs of the molds were in the range of US$2 to US$4 and for the 96-well plates below US$8 (about US$160 per kg of ABS). The maximum resistance to continuous heat is given as 90 degrees Celsius<sup>[[Team:ETH_Zurich/project/references#refCRC|[23]]]</sup>, as a result autoclaving at 121 degrees Celsius was not feasible (see picture below).
<gallery mode="traditional" widths=200px>
<gallery mode="traditional" widths=200px>
Line 79: Line 79:
===PDMS Chip Preparation===
===PDMS Chip Preparation===
-
For the fabrication of millifluidic-chips raw PDMS (Dow Corning Sylgard 184) was prepared by mixing base and curing agent in 10:1 proportion. The PDMS solution was mixed vigorously and degassed (desiccator connected to vacuum) until no  further bubble formation could be observed. Subsequently the mixture was poured over the mold and cured in an vacuum oven over night. The PDMS chip was easily removed without additional aids and placed in OmniTrays (86 x 128 mm, Thermo Scientific). The wells were filled with CB medium and loaded with cells encapsulated in alginate beads.
+
For the fabrication of millifluidic-chips raw PDMS (Dow Corning Sylgard 184) was prepared by mixing base and curing agent in 10:1 proportion. The PDMS solution was mixed vigorously and degassed (desiccator connected to vacuum) until no  further bubble formation could be observed. Subsequently the mixture was poured over the mold and cured in an vacuum oven over night. The PDMS chip was easily removed without additional aids and placed in clear plastic trays (86 x 128 mm; OmniTrays, Thermo Scientific). The wells were then filled with CB medium and loaded with cells encapsulated in alginate beads.
<gallery mode="traditional" widths=200px>
<gallery mode="traditional" widths=200px>
Line 94: Line 94:
===Time-Lapse Movies===
===Time-Lapse Movies===
-
Imaging was implemented with a Biostep Dark-Hood DH-50 (Argus X1 software)  fitted with a Canon EOS 500D DSLR camera and a fluorescence filter (545 nm filter). Pictures were usually taken every 2 min at an excitation wavelength (470 nm) with the standard Canon EOS Utility software. Time-lapse movies were created with Adobe After Effects CC software.
+
Imaging was implemented with a Biostep Dark-Hood DH-50 (Argus X1 software)  fitted with a Canon EOS 500D DSLR camera and a fluorescence filter (545 nm filter). Pictures were usually taken every 2 min at an excitation wavelength (470 nm) with the standard Canon EOS Utility software. Time-lapse movies were created with Adobe After Effects CC software.  
 +
 
 +
Below you find the time-lapse movies taken during the summer. In the very first trial the wells were filled with LB agar, holes were punched with a pipette tip and filled with highlighter-ink (pyranine) to visualize diffusion. Later, different set-ups were tested: chambers filled with liquid medium separated by solidified 2% agarose in the connecting channel and alginate beads in liquid medium.
 +
 
 +
We continued with the 'alginate beads in  liquid medium' set-up, as it yielded the most promising intermediate results, and could then finally show cell-to-cell communication of bacteria confined in beads on our millifluid chip.
 +
 
 +
 
<html></article></html>
<html></article></html>
{{:Team:ETH_Zurich/tpl/foot}}
{{:Team:ETH_Zurich/tpl/foot}}

Revision as of 16:30, 15 October 2014

iGEM ETH Zurich 2014