Team:EPF Lausanne/Envelope stress responsive bacteria

From 2014.igem.org

Revision as of 16:15, 13 October 2014 by Darth Vader (Talk | contribs)

Envelope Stress Responsive Bacteria


The pathway we engineered in Bacteria is the Cpx two component regulatory system. It's natural function is to control the expression of "survival" genes whose products act in the periplasm to maintain membrane integrity. This ensures continued bacterial growth even in environments with harmful extractoplasmic stresses. The Cpx two component regulatory system belongs to the class I histidine kinases and includes three main protein (3 blocks with the descriptions of the proteins) (pathway draw)

Split reporter proteins: Infrared Fluorescent Protein


Solving the orientation of CpxR homodimerization: Split IFP


As the orientation of CpxR homodimerization is not very well studied, we had to resolve which end (C or N terminal) of the CpxR would be the most suitable for the fusion of the IFP fragments. We designed the four following constructs:

  • Both IFP[1] and IFP[2] at the C terminal of CpxR

  • IFP[1] at the C terminal and IFP[2] at the N terminal

  • IFP[1] at the N terminal and IFP[2] at the C terminal

  • Both IFP[1] and IFP[2] at the N terminal of the CpxR


DRAW

Procedure


The first experiment was achieved on a plate reader in order to measure the signal of the four different strains under different stresses: KCL, cupper, KOH or silica beads, which are thought to activate the pathway (link). We also measured as negative control the signal of strains expressing one part of the split only (IFP[1]-CpxR or IFP[2]-CpxR). Three measurements were necessary to finally conclude that only the first configuration works, when both split part of IFP are at the C terminal of the CpxR.

GRAPH

What could be the other sources of stress activating the pathway

  • Antibiotics hypothesis

  • AFM pictures

  • Sponsors