Team:Bielefeld-CeBiTec/Results/rMFC/Construction

From 2014.igem.org

(Difference between revisions)
Line 181: Line 181:
   <h6 id="CV">Cyclic voltammetry - mediator characterization</h6>
   <h6 id="CV">Cyclic voltammetry - mediator characterization</h6>
     <p>
     <p>
-
The next improvement step in our experiments was to carry out cyclic voltammetry measurments. During our reasearch we found out that the workgroup from Dr. Dirk Holtmann of the Dechema research institute in Frankfurt investigates electroactive microorganisms. We visited them in their laboratory and gained lots of helpful recommendations. THey told us to use a potentiostat for further cultivations and helped us to organize one for our project. >br>
+
The next improvement step in our experiments was to carry out cyclic voltammetry measurments. During our reasearch we found out that the workgroup from Dr. Dirk Holtmann of the Dechema research institute in Frankfurt investigates electroactive microorganisms. We visited them in their laboratory and gained lots of helpful recommendations. THey told us to use a potentiostat for further cultivations and helped us to organize one for our project. <br>
-
    
+
A potentiostat balances the current flow and secures to work at a constant potential. It also functions as a measuring system and therefore provides a way to give a statement if the cells consume electric current.    
-
 
+
<br>
-
During our experiments we used a Ag/AgCl reference electrode for measuring the working electrode potential. The counter electrode, which completes the cell circuit, was made from platinum wire. Platinum has the advantage that it is an inert conducter.
+
For our experiments we used a Ag/AgCl reference electrode for measuring the working electrode potential. The counter electrode, which completes the cell circuit, was made from platinum wire. Platinum has the advantage that it is an inert conducter. The set up for the characterization of different mediators is shown is figure 6.
-
 
+
<center>
<center>
Line 193: Line 192:
</div>
</div>
</center>
</center>
 +
 +

Revision as of 01:29, 18 October 2014

-->
Construction of an electrobiochemical reactor

We planned to design a reactor system that is suitable to investigate the electrochemical behaviour in bioprocesses. That includes the possibility to characterize mediators and different electrode materials on the one hand and the electron uptake into the cells on the other.
During our research we discovered the H-cell reactor that seemed to meet with our needs. (Park et al., 1999)
We approached two different concepts to realize the reactor construction. One of our H-cell reactors was constructed with the possibilities given to us by the facillities of our university. We instructed the glass workshop to modify two glass bottles by adding a glass-flange. Besides that the technical workshop build the lids from stainless steel. This approach had the advantage that we could influence the design and had to make precise design drawings especially for the connections in the lids.
The second H-cell reactor was a commercially available system by Adams & Chittenden scientific glass. The commercial system had a smaller volume and the benefit of a larger flange diameter. The necessary lids for that system were also custom design by our workshop. In figure 1 you can see both reactors in comparison.


Figure 1: Single parts of our self-designed H-cell reactors: 1 Custom designed lids that provide connections for: a pO2-electrode, a pH-electrode, an entrance for reference and working electode, air output, heating coils and acid/ base input for pH control, 2 Heating coils, 3 Clamps for the flange connection 4 Sealing rings.
The H-cell is suitable for experiments concerning the investigation of mediator redox-characteristics and indirect electron transfer into electrotrophes.
In addition to the H-cell design we thought of an alternative reactor design that meets with the requirements of direct electron transfer. To enable direct electron transfer it is necessary that there is a large electrode surface provided to the microorganisms. Furthermore substrate limitation should be avoided. To meet with these requirements it is favourable to have an reactor that can be continiously driven. Our proposed solution is a flow cell reactor (FCR) which could be driven continiously.
Testing the set up

Our first experiments were carried out with a constant power supply and we measured the voltage input and the current. The set up is shown in figure 2.


Figure 2: Set up of our first experiments with the H-cell: 1 Ammeter 2 Power supply and voltmeter 3 Cathode compartment 4 Anode compartment
During our first experiments we filled both, the cathode- and the anode-space with phosphate buffer where neutral red was added to final concentration of 100 µM.
It turned out that we could not use the pH-electrode and the pO2-electrode during our cultivations, because they affected the measurement. Especially the pO2-electrode was not suitable in this set up, due to the fact that it is completely made of steel. It turned out that the electrode achieved a grounding of the system which set the lid under electric power. This resulted in a couple of unwanted oxidation processes at the weldseam of the lid. The consequence was to remove both electrodes from the system.
After the customization of the system we carried out a few test runs with differetn electrode materials. At this stage of the project we optimized the attachment of the electrodes and the isolation of the wire which was layed within a silicon tube through the lid.
THe first experiments showed that neutral red is reducable within out set up. The problems that occure if you work with a constant power supply are that the cell potential can not be kept at the same level during the experiments. The dynamic of the electrochemical reactions introduce unwelcome variabilities that cause fluctuations in the potential. Especially the presence of proliferating microorganisms can enhance this effect.

Different electrode materials

We tested different electrode materials for their potential to work in our reactor. We decided to investigate fabric carbon, fabric fleece and platinum electrodes. The different materials are shown in figure 3.


Figure 3: Different electrode materials for characterization experiments: 1 Carbon fabric 2 Carbon fleece 3 Platinum electrode.
Carbonic materials have the advantage that they are relativly cheap and are available in huge amounts. The nature of the processing of the material has a major influence on its electrochemical behavior.
Carbon fabric is made up of individual fibres and has therefore a good stability. Another advantage is that the fibres can overcome quite a long distance due to the fact that they are made of one piece. This assures a good electrical conductivity.
The carbon fleece instead is thicker and provides a larger surface for the microorganisms to attach to the electrode material. This advantage goes at expense of stability and conductivity. The fleece is made of lots of single fibres which leads to a bad connection between them and therefore causes an unfavourable conductivity.

Cultivation - constant voltage

The first experiments in the H-cell reactor were performed under constant direct voltage. These experiments were carried out to test the set up with microorganisms. We investigated if E. coli was able to grow within the needed voltage range and if the different mediators influence the cells if a small electric current is applied.


Figure 4: Comparisson of the growth compatibility of the E. coli KRX WT strain when a voltage is applied or not. Both cultivations were performed in the H-cell reactor in M9 minimal media. One of the cultivatons was performed with an applied voltage of -330 mV the other one was currentless. The optical density and the Xylose concentration were measured with technical duplicates.
The cultivation curves in figure 4 show that E. coli is barely influenced in its growth by an applied current. The optical density reaches the same final value and the Xylose consumption is identical.
These results lead to the conclusion that E. coli is not affected in growth by an applied voltage.
A difference can be observed in the growth between the E. coli wildtype and the constructed E. coli ΔdcuB::oprF when both strains are cultivated with a constant voltage of -330 mV. Both strains were cultivated in the H-cell reactor in M9 minimal media that was supplemented with neutral red to a final concentration of 100 µM.

Figure 5: Comparison of the growth of the E. coli KRX WT strain and the constructed E. coli ΔdcuB::oprF. Both strains were cultivated with a constant voltage of -330 mV in the H-cell reactor in M9 minimal media with 100 µM neutral red added. The optical density and the Xylose concentration were measured with technical duplicates.
The growth curves imply that the E. coli ΔdcuB::oprF strain finds advantageous conditions for its growth in comparison to the E. coli KRX wild type.
Maybe this effect occures due to the added mediator. To give a valid statement on this effect more effort has to be made on this subject. In our case the result indicates that neutral red might have a positive effect on the growth of our constructed E. coli strain.

Cyclic voltammetry - mediator characterization

The next improvement step in our experiments was to carry out cyclic voltammetry measurments. During our reasearch we found out that the workgroup from Dr. Dirk Holtmann of the Dechema research institute in Frankfurt investigates electroactive microorganisms. We visited them in their laboratory and gained lots of helpful recommendations. THey told us to use a potentiostat for further cultivations and helped us to organize one for our project.
A potentiostat balances the current flow and secures to work at a constant potential. It also functions as a measuring system and therefore provides a way to give a statement if the cells consume electric current.
For our experiments we used a Ag/AgCl reference electrode for measuring the working electrode potential. The counter electrode, which completes the cell circuit, was made from platinum wire. Platinum has the advantage that it is an inert conducter. The set up for the characterization of different mediators is shown is figure 6.


Figure 6: The H-cell reactor set-up for the characterization of different mediatory by cyclic voltammetry consists of the following parts: 1 Ag/AgCl reference electrode 2 Platinum working electrode 3 Platinum wire counter electrode 4 Heating water system.

Figure 7:
ParameterValue
MediatorNeutral red
Scan rate [mV-s]35
Step size [mV]1
Scan limit E1 [V]0.3
Scan limit E2 [V]-0.6
Electrode materialPlatinum
AeriationOxygen free by aeriation with nitrogen

blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank


Figure 6:
ParameterValue
MediatorBromphenole blue
Scan rate [mV-s]10
Step size [mV]1
Scan limit E1 [V]0.4
Scan limit E2 [V]-0.85
Electrode materialPlatinum
AeriationOxygen is present

blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank


Figure 7:
ParameterValue
MediatorNeutral red
Scan rate [mV-s]10
Step size [mV]2
Scan limit E1 [V]0.5
Scan limit E2 [V]-0.6
Electrode materialPlatinum
AeriationOxygen is present

blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank


Figure 8:
ParameterValue
MediatorNeutral red
Scan rate [mV-s]20
Step size [mV]1
Scan limit E1 [V]0.51
Scan limit E2 [V]-0.8
Electrode materialPlatinum
AeriationOxygen is present

blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank


Figure 9:
ParameterValue
MediatorNeutral red
Scan rate [mV-s]10
Step size [mV]1
Scan limit E1 [V]0.1
Scan limit E2 [V]-0.6
Electrode materialPlatinum
AeriationOxygen free by aeriation with nitrogen

blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank


Figure 10:
ParameterValue
MediatorNeutral red in M9 minimal media with neutral red
Scan rate [mV-s]10
Step size [mV]1
Scan limit E1 [V]0.7
Scan limit E2 [V]-0.6
Electrode materialPlatinum
AeriationOxygen present

blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank blank

Chronoamperometry - current consumption


Figure 2: Cultivation of the E. coli KRX ΔdcuB::oprF strain in M9 minimal media with 100 µM neutral red added. During the cultivation there was set a potential of -400 mV on the H-cell achieved by the chronoamperometric method. The figure shows the optical density, Xylose concentration, and the NAD/NADH level during the cultivation, plotted against time.

Figure 2: Cultivation of the E. coli KRX WT in M9 minimal media with 100 µM neutral red added. During the cultivation there was set a potential of -400 mV on the H-cell achieved by the chronoamperometric method. The figure shows the optical density, Xylose concentration, and the NAD/NADH level during the cultivation, plotted against time.

Figure 2: Cultivation of the E. coli KRX WT in M9 minimal media with 100 µM neutral red added. During the cultivation there was set a potential of -400 mV on the H-cell achieved by the chronoamperometric method. The figure shows the optical density, Xylose concentration, and the NAD/NADH level during the cultivation, plotted against time.

Figure 2: Overlay of the chronoamperometric measurements from cultivation A B and C.

Flow Cell


Figure 10: Basical set up of the FCR: 1 Hose pump 2 FCR connectet to an energy supply source and to the pump 3 Stock bottles for media and buffer.

Figure 11: Basical set up of the FCR: 1 Connection for the power supply cabel at the anode 2 Connection for the power supply cabel at the cathode 3 Hose connection nipple.

Figure 12: Individual components of the FCR: 1 Stable base for the cell 2 End cover plate with electrical plug for power supply 3 Separation partitions for anode- and cathode-space 4 Sealing rings 5 Screws for the fixation of the single parts 6 Carbonic electrode material.


References
  • Park, D. H.,Laivenieks, M., Guettler, M. V., Jain, M. K. & Zeikus, J.G. (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolic production. In: Appl. Environ. Microbiol., 65 (7), pp. 2912 - 2917.