Team:Aberdeen Scotland/Parts/ 2006

From 2014.igem.org

(Difference between revisions)
Line 72: Line 72:
-
“INP-VEC-F” (CGCGGCCGCTTCTAGAttaatacgactcactataggg)
+
“INP-VEC-F” (CGCGGCCGCTTCTAGAttaatacgactcactataggg)<br>
-
“INP-Rem-R” (aagctttttatcatcatcatctttataatcagatctTCCCGCCACGCTGC)
+
“INP-Rem-R” (aagctttttatcatcatcatctttataatcagatctTCCCGCCACGCTGC)<br>
-
“INP-FLAG-F” (AGATCTGATTATAAAGATGATGATGATAAAAAGCTTtaataatactagcaacatatcataacggagtg)
+
“INP-FLAG-F” (AGATCTGATTATAAAGATGATGATGATAAAAAGCTTtaataatactagcaacatatcataacggagtg) <br>
-
“INP-VEC-R” (AGCGGCCGCTACTAGTtataaacgcagaaaggccc)
+
“INP-VEC-R” (AGCGGCCGCTACTAGTtataaacgcagaaaggccc) <br>
Two INP-YFP-FLAG fragments were created by PCR amplification, both use K523013 as the template, the first uses “INP-VEC-F” and “INP-FLAG-R” primers, the second uses “INP-VEC-R” and “INP-FLAG-F” primers. The Clontech InFusion kit was used to recombine the two INP-YFP-FLAG fragments with pSB1C3 backbone (cut with Xba1 and Spe1); this kit was followed according to the manufacturer’s instructions.
Two INP-YFP-FLAG fragments were created by PCR amplification, both use K523013 as the template, the first uses “INP-VEC-F” and “INP-FLAG-R” primers, the second uses “INP-VEC-R” and “INP-FLAG-F” primers. The Clontech InFusion kit was used to recombine the two INP-YFP-FLAG fragments with pSB1C3 backbone (cut with Xba1 and Spe1); this kit was followed according to the manufacturer’s instructions.

Revision as of 21:12, 17 October 2014

Team:Aberdeen Scotland/Parts - 2014.ogem.org



K1352006 is a part which has a FLAG-tag octapeptide flanked by a multiple cloning site (MCS) inserted into Bba_K523013 (K523013 expresses ice nucleation protein (INP)); specifically, on the end of a linker, which is in turn on the C-terminus of INP and is in the same reading frame. The FLAG-tag is a BglII restriction site, followed by a FLAG octapeptide, followed by a HindIII restriction site; the sequence of which is as follows; the octapeptide is uppercase, the restriction sites are lowercase: (agatctGATTATAAAGATGATGATGATAAAaagctt) Attaching a FLAG-tag to the end of INP means that it will be expressed on the surface of the cell, the purpose of this is to allow the rapid insertion (via the MCS) of polypeptides (an antigen for example) to the C-terminus end of INP; this allows the surface expression of said polypeptide. For the 2014 Aberdeen iGEM project, this part was intended to be used as a trypanosome antigen displayer. Creation of INP-YFP-FLAG fragments followed by InFusion cloning Four infusion primers (primers with one homologous half (lower case) to the template, and one “overhang” half (upper case), the last 15 nucleotides of which is homologous to another DNA fragment) were designed. “INP-VEC-F” (CGCGGCCGCTTCTAGAttaatacgactcactataggg)
“INP-Rem-R” (aagctttttatcatcatcatctttataatcagatctTCCCGCCACGCTGC)
“INP-FLAG-F” (AGATCTGATTATAAAGATGATGATGATAAAAAGCTTtaataatactagcaacatatcataacggagtg)
“INP-VEC-R” (AGCGGCCGCTACTAGTtataaacgcagaaaggccc)
Two INP-YFP-FLAG fragments were created by PCR amplification, both use K523013 as the template, the first uses “INP-VEC-F” and “INP-FLAG-R” primers, the second uses “INP-VEC-R” and “INP-FLAG-F” primers. The Clontech InFusion kit was used to recombine the two INP-YFP-FLAG fragments with pSB1C3 backbone (cut with Xba1 and Spe1); this kit was followed according to the manufacturer’s instructions.

Background to Parts Design



Figure 1; a Xba1 + HindIII restriction digest screen of recombinants. The recombinant which went on to become K1352006 is in lane 5. The “L” lane is DNA marker (ladder). The arrows are to highlight the distance travelled by the HindIII-negative recombinants.


">