E. *chrono*

Vanderbilt Microfluidics

iGEM 2014
New Track, New Team

• Vanderbilt iGEM was formed this past February by a group of freshmen interested in research

• Collaboration between Vanderbilt iGEM and the Vanderbilt Institute for Integrative Systems Biology Research and Education (VIIBRE)

• Dealt with many hurdles this past year, not just in research
What are microfluidic devices?

- Leverage microliter quantities of fluids to enable high throughput experiments
 - Individual cell manipulation
 - Genetic circuit assembly
 - Organ-on-a-chip devices (OoC)
Big Bold Plans: *E. chrono*

- Develop an integrated synthetic biology and microfluidic platform
- Leverage genetic circuits combined with engineering to take synthetic biology to new heights
Quorum sensing leads to a cool idea

Credit: Figure 1, Danino, T.; Palomino-Mondragon, O.; Tsmiring, L; Hasty, J A Synchronized Quorum of Genetic Clocks. Nature 2010, 463, 326-330.
Build a fluorescent *E. coli* watch

• Team member Sam Budoff calls and gives me the crazy idea to make a watch

• With the idea in hand, all we needed now was the how

• Combine microfluidics technologies seamlessly with synthetic biology and genetic circuits
Purpose

• There were three main goals for our project:

• Learn the microfluidic design and development process and pass this knowledge on to college and high school students

• Investigate methods of microfluidic device fabrication easily accessible for future iGEM teams to utilize

• Develop novel microfluidic devices capable of manipulating cells for use in an *E. coli* watch
Designing Devices

- Develop our own devices using AutoCAD and Inkscape
Standard photolithography is slow and expensive
Foil embossing method

Figure 3: Embossing procedure. Top Row: Assembly with top foil loosely attached to top pressure plate. Close-up of top foil on pressure plate. Bottom foil on ABM vinyl with light embossing of ABM pattern showing through. Middle Row: Dollop of hot glue directly on pattern. Assembled sandwich of ABM, hot glue, and two foil layers in the embosser. Compression of the embosser with hot glue extruding from edge. Bottom Row: Fresh embossed sandwich cooling on bench. Parting embossed foil master from ABM vinyl. Embossed foil master, feature side up. Device design by Cameron Togrye.
Our solution: Vinyl cutting

1. Cut Design
2. Level Design on Glass Slide
3. Coat in PDMS
4. Cut out Device and Punch
5. Plasma Bond to Glass Slide
Vinyl cutting is faster and cheaper
Vinyl cutting is faster and cheaper
Finished Microfluidic Devices
High School Outreach
Vanderbilt School for Science and Math
High School Outreach
Vanderbilt School for Science and Math
Conclusions:

• Easy, fast, and cheap microfluidic device fabrication made available to future iGEM teams

• Designed and fabricated novel devices to integrate into future experiments and the *E. chrono* project

• Hope to work more closely with synthetic biology teams next year and leverage microfluidic technologies for the development of parts
Acknowledgments: