DEGREDO PETRONUM

METU iGEM 2014 Team

Giant Jamboree Boston
10/31/14
Pollution

Environmental Health Problems

(Reference:
Degredo PETronum!
Plastic PET Production

Figure 3: World Plastics Production 2010
Source: PlasticEurope Market Research Group (PEMRG)
Plastic PET Production

- 265 Mtone produced each year
PLASTIC PRODUCTION / PLASTIC RECYCLING

Figure 1
Growth in Post-Consumer Plastic Bottle Recycling

Figure 2: World Plastics Production 1950-2010
Source: PlasticsEurope Market Research Group (FEMRG)
Disposal, Recycling and Energy Recovery 2012

Figure 11: Disposal, recycling and energy recovery in 2012
Source: Consultic

In 2012 plastics recycling and energy recovery rate continues to increase. (EU-27+N/CH)

Pyruvate

WHY NOT?
Why not synthetic?
PET consists polymerized units of the monomer ethylene terephthalate, with repeating $\text{C}_{10}\text{H}_8\text{O}_4$ units

Structural Analysis
PET- Pyruvate Pathways

PET (polyethylene terephthalate)

TPA (terephthalic acid)

DCD ((1R,2S)-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylic acid)

PCA (protocatechuic acid)

Catechol

2-hydroxymuconate semialdehyde

2-oxopent-4-enoate

4-hydroxy-2-oxopentanoate

Pyruvate

http://2014.igem.org/Team:METU_Turkey_project
Our Circuit Design

J23108 C.Promoter K316003 RBS+Catechol K1095000 Hydrolase K1392931 Hydratase K1392932 Aldolase B1006 Terminator

2,3-dioxygenase
New part Bba_K1392931

2-oxopent-4-enoate + H₂O → 4-hydroxy-2-oxopentanoate

2-oxopent-4-enoate hydratase

Escherichia Coli BL21(DE3)
New part Bba_K1392932

4-hydroxy-2-oxoglutarate \rightarrow pyruvate + glyoxylate

4-hydroxy-2-oxoglutarate aldolase

Escherichia Coli BL21(DE3)
Characterization of Catechol-2,3-dioxygenase

K1392991 = J23108 + K316003
Kill-Switch

K80800 K515004 C0040 B1006
AraC RBS+Antiholin Tet+LVA Terminator

R0040 K112806 K124014 B1006
TetR T4 Endolysin Holin Terminator
The issue

Arabinose present

Arabinose absent
MODELING
MODELING

Catechol → Catechol 2-3 dioxygenase → 2-hydroxymuconate semialdehyde → 2-hydroxymuconate semialdehyde hydrolase → 4-hydroxy 2-oxopentaonate → 4-hydroxy 2-oxovalerate aldolase → 2-oxopent 4-enoate hydratase → 2-oxopent 4-enoate → Pyruvate
Catechol Degredation

- Simulation of catechol diffuses by cell and degrades to pyruvate instantly

http://2014.igem.org/Team:METU_Turkey_modeling
Parameters of Catechol Degradation

Parameters of our simulation which we used in catechol degradation to pyruvate

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1_St</td>
<td>0.04</td>
<td>promoter strength</td>
</tr>
<tr>
<td>catechol_diffusion</td>
<td>0.000076</td>
<td>catechol diffusion coefficient per cm^2</td>
</tr>
<tr>
<td>deg_p1prot</td>
<td>0.00022</td>
<td>catechol 2,3-dioxygenase degradation rate</td>
</tr>
<tr>
<td>Vm_c2h</td>
<td>930</td>
<td>catechol 2,3-dioxygenase V_max</td>
</tr>
<tr>
<td>Km_c2h</td>
<td>0.015</td>
<td>catechol 2,3-dioxygenase Km</td>
</tr>
<tr>
<td>p1_translation</td>
<td>0.0017</td>
<td>catechol 2,3-dioxygenase translation rate</td>
</tr>
<tr>
<td>Vm_2h2o</td>
<td>35</td>
<td>2-hydroxymuconate semialdehyde hydrolase V_max</td>
</tr>
<tr>
<td>Km_2h2o</td>
<td>0.017</td>
<td>2-hydroxymuconate semialdehyde hydrolase Km</td>
</tr>
<tr>
<td>deg_p2prot</td>
<td>0.0000992</td>
<td>2-hydroxymuconate semialdehyde hydrolase degradation rate</td>
</tr>
<tr>
<td>p3_translation</td>
<td>0.0017</td>
<td>2-oxoprop-4-enolate hydratase translation rate</td>
</tr>
<tr>
<td>Vm_2o4h</td>
<td>450</td>
<td>2-oxoprop-4-enolate hydratase V_max</td>
</tr>
<tr>
<td>Km_2o4h</td>
<td>0.000041</td>
<td>2-oxoprop-4-enolate hydratase Km</td>
</tr>
<tr>
<td>p4_translation</td>
<td>0.0017</td>
<td>4-hydroxy-2-oxovalerate aldolase translation rate</td>
</tr>
<tr>
<td>Vm_4hp</td>
<td>5.6</td>
<td>4-hydroxy-2-oxovalerate aldolase V_max</td>
</tr>
<tr>
<td>Km_4hp</td>
<td>88.6</td>
<td>4-hydroxy-2-oxovalerate aldolase Km</td>
</tr>
</tbody>
</table>

Characterization of our Bba_K1392991 part by exposing catechol
Graphs of Kill Switch Model

1) Presence of arabinose the simulation of AraC promoter without holin and endolysin

http://2014.igem.org/Team:METU_Turkey_modeling
2) Absence of Arabinose, the simulation of cell lysis by holin and endolysin

http://2014.igem.org/Team:METU_Turkey_modeling
Parameters of our kill switch model by using AraC and TetR promoter

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dif_Ara</td>
<td>7x10^{-18}</td>
<td>Arabinose Diffusion Rate</td>
</tr>
<tr>
<td>Diss_AraC</td>
<td>0.00012</td>
<td>Dissociation of AraC</td>
</tr>
<tr>
<td>As_AraC</td>
<td>0.00012</td>
<td>Association of AraC</td>
</tr>
<tr>
<td>Deg_AraC</td>
<td>0.0013833333</td>
<td>Degradation of AraC</td>
</tr>
<tr>
<td>H_Co</td>
<td>2.26</td>
<td>Hill Coefficient</td>
</tr>
<tr>
<td>Deg_mR</td>
<td>0.00288</td>
<td>Degradation of mRNA</td>
</tr>
<tr>
<td>Pro_TetR</td>
<td>0.0655x10^{-6}</td>
<td>TetR max. production rate</td>
</tr>
<tr>
<td>Rep_TetR</td>
<td>0.001667x10^{-6}</td>
<td>TetR repression coefficient</td>
</tr>
<tr>
<td>Deg_TetR</td>
<td>0.001153</td>
<td>TetR degradation rate</td>
</tr>
<tr>
<td>Cf Co TetR</td>
<td>2</td>
<td>TetR cooperativity coefficient</td>
</tr>
</tbody>
</table>

http://2011.igem.org/Team:St_Andrews/modelling
http://2011.igem.org/Team:ETH_Zurich/Modeling/Parameters
Achievements

2 New Parts added to the library
- K1392931
- K1392932

Composite and Characterization
- K1392991

Composite Parts added to the library
- K1392971
- K1392972
- K1392939
- K1392938
InterLab Study
1) BBa_I20260 in the pSB3K3 vector

2) BBa_J23101 + BBa_E0240 in pSB1C3 backbone

3) BBa_J23115 + BBa_E0240 in pSB1C3 backbone
Mean fluorescence intensity

A04 LB+E.coli: All 1,533.32

B01 DV1-S1: All 1,194.19
B02 DV1-S2: All 1,079.89
B03 DV1-S3: All 1,165.72

C01 DV2-S1: All 1,416.72
C02 DV2-S2: All 1,371.77
C03 DV2-S3: All 1,345.70

D01 DV3-S1: All 1,419.34
D02 DV3-S2: All 1,355.00
D03 DV3-S3: All 1,123.69
SynBio Survey!
II. METU The Day of Synthetic Biology!
PET Degradation Game
METU Development Foundation Schools

- We gave Lab education to young iGEM'ers!
- We have started, advised and helped to this year's High School Team "METUHS-Ankara"!
- We are raising new iGEM'ers!
PET Degredation Meeting in Eskişehir!
SynBio Party! #2

SynBio Party

SynBio Party

SyBio Party! #3

AUTUMN Party
Future Prospect

Genetic Modified Organism
Thank you for your attention

Special thanks to:
Prof. Dr. Mahinur S. Akkaya
Assoc. Prof Dr. Çağdaş D. Son
Assoc. Prof Dr. Mayda Gürsel
R.A Ayça Çırçır
R.A Çiğdem Yılmaz
R.A Handan Melike Dönertaş
R.A Side Selin Su Yirmibeşoğlu
R.A Alişan Kayabölen
CEO Burak Yılmaz
Sponsors
Team

Visit our wiki!
Special thanks to:
Prof. Dr. Mahinur S. Akkaya
Assoc. Prof Dr. Çağdaş D. Son
Assoc. Prof Dr. Mayda Gürsel
R.A Ayça Çırçırcır
R.A Çiğdem Yılmaz
Handan Melike Dönertas
Side Selin Su Yirmibesoglu
Alişan Kayabölen
CEO Burak Yılmaz