Using a highly expressed cyclic-di-GMP aptamer to affect biofilm formation

PROBLEM

- Biofilms are bacterial growths that form on surfaces when bacteria experience stressful conditions.
- The bacteria secrete an extracellular matrix that promotes attachment, excludes immune cells, and increases antibiotic resistance.
- These biofilms form in wounds, lungs of cystic fibrosis patients, chronic infections, and inserted medical devices.
- The CDC estimates that 65% of all infections in developed nations are the result of biofilms.
- They are the leading cause of Healthcare Associated Infections.

BACKGROUND

- Cyclic-di-GMP is a second messenger universal in biofilm signaling.
- Increased [c-di-GMP] leads to increased biofilm formation.
- Decreased [c-di-GMP] leads to increased motility and flagella expression.
- *B. bacteriovorus* has a massively expressed regulatory RNA (merRNA) that contains a c-di-GMP aptamer.
- This is hypothesized to sequester c-di-GMP and therefore promote motility.

EXPERIMENTAL DESIGN

The merRNA transcript will bind to and sequester c-di-GMP. Lower intracellular c-di-GMP concentrations inhibit biofilm formation.

RESULTS

Initial Results

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Biofilm formation (30°C)</th>
<th>Biofilm formation (25°C)</th>
<th>Biofilm formation (37°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Biofilm Formation

- Grow bacteria statically in a 96-well plate
- Remove planktonic bacteria and rinse. Only cells stuck in a biofilm remain behind.
- Stain with crystal violet and rinse
- Dissolve crystal violet in acetone/ethanol
- Record A550

Contrary to expectations, cells expressing the merRNA exhibited increased biofilm formation. This was observed most consistently at lower temperatures, which tend to incur a metabolic burden and favor biofilm states.

Human Practices

Phage Encapsulation in Silk Bandages

"Tufts Synthetic Biology envisions a biomedical product consisting of a silk film embedded with a lyophilized cocktail of bacteriophage-targeting pathogens responsible for chronic wound infection."

Bacteriophage

- Growing antibiotic resistance perhaps most critical concern of modern medicine
- Deaths caused by antibiotic resistance top $23,000 per year in the U.S. alone
- U.S. economic cost due to antibiotic resistant infections upwards of $50 Billion per year
- Bacteriophages are viruses which target specific bacterial strains
- Approved for food, agricultural, and environmental use by FDA, USDA, and CDC
- Utilised therapeutically against bacterial infections in Republic of Georgia since 1930’s
- Face negative stigma and insufficient, credible research in Western medicine

Silk – Promising Platform for Bacteriophage Delivery & Wound Healing

- Thermo-stabilizes bacteriophages, Confers moisture resistance
- Increases distributive ability for elimination of expensive and electricity-based storage for developing countries
- Biocompatible, Promotes wound healing, Directed Dissolution and compound release

Bandage

- Encapsulate bacteriophage cocktail within silk for treatment of Methicillin-resistant Staphylococcus aureus (MRSA)
- Utilized against antibiotic resistant infections aids in more rapid approval and use by the medical industry
- Potential for treatment of combat wounds, household wounds, burn victims, etc.

REFERENCES

ACKNOWLEDGMENTS

- Biology of Phage: Tufts Synthetic Biology
- Phage History and Current Use: Anna Kuchment
- Current Research: Natural Phage - Dr. Andrew Camilli
- Current Research: Engineered Phage – Mark Mimee
- Distributive Action: Christopher Ghadban
- Bandage: – Anna Kuchment

FUTURE WORK

- Improved delivery techniques
- In vivo studies
- Comparative studies with other biofilm inhibitors

SPONSORS

- Tufts Synthetic Biology
- Tufts University
- National Science Foundation
- Research Corporation

DISCLAIMER

The contents of this manuscript have been reviewed by members of the Tufts Synthetic Biology team. The authors are solely responsible for the content and accuracy of the information presented. Any opinions, findings, conclusions, or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the sponsors.