Rewirable Circuits
An elegant means of system integration

Introduction

- **Goals**
 - Challenges:
 - Crosstalk: regulators may interact with each other’s targets leading to errors in the desired operation.
 - Host overload: the synthetic circuits may compete with natural parts that maintain the normal cellular processes for limited resources.

- **A new concept we proposed**
 - Rewirable circuit. To implement more functions, jamming in more modules is not the only way. We propose an alternative: Make full use of similar structures, and rewire the regulatory relationships.

- **Advantages of our idea**
 1. Circuit becoming adaptable: specific modules come into function only when they are needed.
 2. Reducing cell workload: parallel modules now share the same structures.
 3. No crosstalk between processing modules: parallel modules no longer parallel in space, but in function.

Methods

We constructed two circuits to prove our concept. The one is an integrated module of two classical circuits, a repressilator and a toggle switch. The other is a quorum-sensing module that sometimes performs positive feedback control and sometimes carries out negative feedback control.

Proof of our concept

- **Characterization**
 - We estimated and adjusted some parameters in our systems.

- **Results**
 - We added a GFP under the control of luxP to test our quorum-sensing module.

- **Improvement in I/O module**
 - Input module
 - To ameliorate the leakage problem of the recombinease, we utilized an engineered riboregulator to implement post-transcriptional control.
 - Output module
 - Sometimes the fluorescent proteins accumulate and are not very efficient to monitor the real-time processes. We synthesized RNA aptamers and monitored the fluorescence at RNA level.

Design principles of rewirable circuits

How to customize your own rewirable circuits? Here are the general steps:

- Design fitness functions
- Scan the topological space
- Match topological structures
- Sort and select

Policy & Practices

- **Intellectual Property Law**
 - "What if rewire goes haywire?"—despite scientists’ greatest effort, why would the public always fear the worst? We find its origin in psychological archetypes: God and Lucifer.
 - A 4-Dimension Model to help iGEmers think.

- **Economics**
 - If a basic assumption which underlines all economics analysis fails, where does that leave policies, which are based on this analysis?

- **Outreach**
 - Public Outreach: We held activities such as Future Scientists, iGEM Talks, and had videos on mainstream media.
 - Collaboration: We held the 1st Central China iGEMers’ Meetup, initiated the Central China iGEMers’ Consortium, helped each other, and reached outside China!

Acknowledgements

- Thanks to HUST-China for their help in the assembly of constructs.
- Thanks to our instructors and all members of 2013 HZAU-China team
- Special thanks to the Innovation Lab of College of Life science and Technology for offering lab space, equipment and suggestions to our project.

References: