SPONGE PATROL: THE OCEAN'S WATCHER

OVERVIEW: OUR ENVIRONMENT? A DISASTER!
70% industrial waste ends up in the ocean.
14x10^11 tons of litter/year thrown into Earth's water (a sphere of diameter 1400 km).

DANGER for 2 M species, ~25% of all species, INCLUDING US!

AIM: Detecting chemical industrial wastes in endangered biotopes.

FOCUS: 5 of the most dangerous chemicals in water
- PCB, Phenol, Cadmium, Lead and Nitrate.

SOLUTION: A real-time in situ biosensor based on the combination of a Biofilter, a sponge, and a biosensor, a genetically modified sponge microbiome

ACHIEVEMENTS:
- Characterization of a new chassis (phenotype + genotype)
- Transformation of a new chassis
- Development of a new transposase system
- Improvement of phenol sensor
- Model of phenol sensors activities
- Model of the sponge ability to optimize sensing

POLICY & PRACTICES

- Reflection: Syntax wants to be the engineering of biology, but is inefficient and unpredictable. Rudges are inherent to the creative process, no matter how close to engineering it gets.
- Discussion: The ethical issues raised by the modification of an animal’s microbiome and its use as biomimetic tool.

EXTRA: Interlab study
We characterized the 3 requested constructions, and added 5 extras.
Corrected GFP fluorescence intensity according to OD 600 nm

MODELLED PREDICTIONS FOR SENSORS

PHENOL: (Kappa: Stochastic Rule-based modelling)
2 MODELS:
- Model 1: one phenol bind each DmpR dimere.
- Model 2: one phenol bind an hexamere.

RESULTS:
- Model 1: Production of GFP per time units
- Model 2: Production of GFP per time units

SPONGE PATROL
Let's marine sponges help us clean the oceans?

THE VIRTUAL SPONGE
Sponges can filter 1200 times their volume per day
BUT: Internal Quantity of compound VS External Concentration?

RESULTS:
Approximation of the compound accumulation effect caused by geometry

A NEW CHASSIS: Pseudovibrio denitrificans

A 5-step process to turn an unknown bacteria into an iGEM chassis:
1) GROWTH
2) SELECTIVITY
3) ELECTROPREPARATION-READY
4) A DNA ENGINEERING TOOL: TRANSPONS
5) GENOME ASSEMBLY

THE VIRTUAL SPONGE

MODELLED PREDICTIONS FOR SENSORS

PHENOL SENSORS:
- A constitutively-expressed DmpR will bind to P0 to promote GFP expression, only when DmpR binds to phenol.
- Best Signal Strength: BBA_1413002
- The strongest RBS => 2.5 times stronger signal for 1mM Phenol than the weakest one. 1µM Phenol signal is conserved in both Biobrick.
- Best Sensitivity: BBA_1413001
- The strongest RBS => lower induction ratio for 1µM and 1mM Phenol. Due to leakiness induced by the stronger RBS.

PCB SENSOR:
- To complement SACLAY 2013, we split their construct in 3 Biobricks, BBA_1413021, BBA_1413023 and BBA_1413024.

rnaseq:
- RNAseq data of Pseudovibrio fluorescence K82 are available to the iGEM community on demand to help teams find new sensors.

Two genetic circuits in the microbiote
- Two new genetic circuits for Phenol sensors.
- Construction:
 - Construction:
 - Construction:

Acknowledgements

*ADGIM team of the French National Museum of Natural History (MHN, Paris)
The Institute of Molecular Enzyme Technology, Biocat (Biebrzana, Poland)
The Institute of Biochemistry and Molecular Biology (UMBB, Warsaw)
The Institute of Marine Biology, Mediterranean Biopolis (BiolMedit, Nice)